
Enabling the automatic
verification and exchange

of DEMO models

Proefschrift ter verkrijging van de graad van doctor
aan de Radboud Universiteit Nijmegen

op gezag van de rector magnificus prof. dr. J.H.J.M. van Krieken,
volgens besluit van het college voor promoties

in het openbaar te verdedigen op

donderdag 31 maart 2022
om 12.30 uur precies

door

Mark Arnold Theodoor Mulder
geboren 24 november 1971

te Amersfoort

1

Promotor(en):
Prof. dr. H.A. Proper
Prof. dr. ir. J.L.G. Dietz (TU Delft)

Manuscriptcommissie:
Prof. dr. M.C.J.D. van Eekelen
Prof. dr. J. Barijs (San José State University, Verenigde Staten)
Prof. dr. J.M. Tribolet (Universidade Técnica de Lisboa, Portugal)
Dr. S.J.B.A. Hoppenbrouwers
Dr. D. Bork (Technische Universität Wien, Oostenrijk)

2

Enabling the automatic
verification and exchange

of DEMO models

Dissertation to obtain the degree of doctor
from Radboud University Nijmegen

on the authority of the Rector Magnificus prof. dr. J.H.J.M. van Krieken,
according to the decision of the Doctorate Board

to be defended in public on

Thursday, March 31, 2022
at 12.30 pm

by

Mark Arnold Theodoor Mulder
born on November 24, 1971

in Amersfoort (the Netherlands)

3

Supervisor(s):
Prof. dr. H.A. Proper
Prof. dr. ir. J.L.G. Dietz (TU Delft)

Manuscript Committee:
Prof. dr. M.C.D.J. van Eekelen
Prof. dr. J. Barijs (San José State University, USA)
Prof. dr. J.M. Tribolet (Technical University of Lisbon, Portugal)
Dr. S.J.B.A. Hoppenbrouwers
Dr. B. Bork (TU Wien, Austria)

4

About the image1 on the cover

The column located at the highest point of the hill (number 23) is left blank to represent
the concept of “emptiness” (Sunyata), which is the key theme in the Heart Su¯tra. The
Heart Su¯tra is a popular sutra in Maha¯y¯ana Buddhism. Its Sanskrit title can be
translated as “The Heart of the Perfection of Wisdom”.

The sutra famously states, “Form is empty, emptiness is form.”. It is a condensed
expose on the Buddhist Mahayana teaching of the Two Truths doctrine, which says that
ultimately all phenomena are sunyata, empty of an unchanging essence. This emptiness
is a ‘characteristic’ of all phenomena, and not a transcendent reality, but also “empty”
of an essence of its own. Specifically, it is a response to Sarvastivada teachings that
“phenomena” or its constituents are real2.

1https://commons.wikimedia.org/wiki/File:Wisdom Path, (Hong Kong).jpg
2https://en.wikipedia.org/wiki/Heart Sutra

5

Abstract

The Design and Engineering Methodology for Organisations (DEMO) is a core method
within the discipline of Enterprise Engineering (EE). It enables the creation of so-called
essential models of enterprises. Such models are enterprise models that aim to focus on the
organisational essence of an enterprise by leaving out (as much as possible) details of the
socio-technical implementation. The organisational essence is then expressed primarily in
terms of the actor roles involved, and the business transactions between these roles.

The DEMO method has a firm theoretical foundation. At the same time, there is an
increasing uptake of DEMO in practice. This also results in a need for enterprise-grade
tool support for the use of the method.

In this thesis, we report on a study concerning the selection, configuration, and ex-
tension, of an enterprise-grade tool to support the use of DEMO in practice with the
need of the automatic verification and exchange of DEMO models. The configuration
of the selected tool framework to support DEMO modelling, provided general insights
regarding the development of enterprise-grade tool support for (model-driven) methods
such as DEMO, while also providing feedback on the consistency and completeness of the
DEMO Specification Language (DEMOSL); the specification language that accompanies
the DEMO method.

7

Foreword

This thesis is the result of a 8-year lasting research to gain the maximum grade obtainable
by study, in the Netherlands. For me it was the most challenging task on a logical subject
ever. Combining this with changing jobs, starting my own company, next to matters
concerning my family; wife and 3 kids was not an easy road to take. Compared to all of
the above, the thesis was simple.

Over these 8 years one specification and seven papers have been published as an
abstract of this thesis and associated artefacts. These papers are listed in chapter Pub-
lications on page 21.

I got on the path of obtaining PhD via my father-in-law Ed ten Voorde, who kept
telling me it would be a wise thing to do. So finally in 2012 my research idea started
with automating the then popular term of omnichannel communication. In my opinion
this had to be based on DEMO, which in turn needed more specification for it to be
automated. It turned out to be more than only more specification which in turn resulted
in the title of this thesis. Via Martin Op’t Land, Raymond Slot and Wiebe Wiersema
this idea was formalized in 2013. During the last 8-years a lot of people embarked in
my journey towards today: Jan Dietz, Hans Mulder, Jan Verelst, Herwig Mannaert, Erik
Proper, José Tribolet, David Aveiro, Robert Pergl, Dominik Bork, Joseph Barjis, Stijn
Hoppenbrouwers, Johan Versendaal, Steven van Kervel, Holke Visser, Ronald Lans and
Fiodor Bodnar, all of whom I’d like to thank for their lasting support. Thank you!! I’m
fairly sure I failed to mention everyone that helped me, but be sure my thanks concern
you too.

ir. Mark A.T. Mulder

9

Contents

Abstract 7

Foreword 9

Acronyms 17

Publications 21

Paper Trail 23

1 Introduction 27
1.1 Background . 27
1.2 The DEMO Methodology . 28

1.2.1 Viewpoints on an Organisation . 28
1.2.2 DEMO and its Development . 30
1.2.3 Knowledge Base . 33
1.2.4 Practice . 33

1.3 Research Focus . 34
1.4 Research Objectives . 35

1.4.1 Problem Statement . 35
1.4.2 Main Research Question . 35
1.4.3 Research Questions . 36

1.5 Research Method . 37
1.5.1 Design Science Research . 37
1.5.2 DSR according to Hevner et al. 38
1.5.3 DSR according to Aken and Andriessen 39
1.5.4 DSR according to Wieringa . 40

1.6 Thesis Structure . 44

I Conceptual Model 49

2 Conceptual Framework 51
2.1 DEMO . 51

2.1.1 PSI-Theory . 51
2.1.2 DEMO Concepts . 59

10

2.1.3 DEMO Aspect Models . 59
2.2 Perspectives on DEMO Models . 66
2.3 MU Theory . 67
2.4 Repository . 69
2.5 The Notion of Metamodel . 69
2.6 The Notion of Partial Metamodel . 70
2.7 Fact Diagrams . 71
2.8 The Notion of Enterprise-grade . 71
2.9 The Notion of Tool . 72

3 The DEMO Specification Language 73
3.1 Modelling (in) DEMOSL . 73
3.2 Observations . 76
3.3 DEMOSL Inconsistencies and Omissions 77

3.3.1 DEMOSL Metamodel . 77
3.3.2 Construction Metamodel . 78
3.3.3 Process Metamodel . 81
3.3.4 Fact Metamodel . 83
3.3.5 Action Metamodel . 85
3.3.6 Visualisation . 86
3.3.7 Summary . 87

4 The DEMO Specification Language Proposal 89
4.1 Partial Metamodels . 92

4.1.1 Ontological-Metamodel . 93
4.1.2 Verification-Metamodel . 95
4.1.3 Visualisation-Metamodel . 97
4.1.4 Exchange-Metamodel . 98

4.2 Construction Metamodel . 101
4.2.1 Improvements in the CM . 101
4.2.2 Organisation Construction Diagram 102
4.2.3 Transaction Product Table . 103
4.2.4 Bank Content Table . 103
4.2.5 Elementary Transaction Kind . 103
4.2.6 Aggregate Transaction Kind . 106
4.2.7 Elementary Actor Role . 107
4.2.8 Composite Actor Role . 108

4.3 Process Metamodel . 110
4.3.1 Improvements in the PM . 110
4.3.2 Process Structure Diagram . 111
4.3.3 Transaction Process Diagram . 112
4.3.4 Elementary Transaction Kind . 112
4.3.5 General Step Kind . 112
4.3.6 Transaction Kind Step Kind . 113

11

4.4 Fact Metamodel . 114
4.4.1 Improvements in the FM . 115
4.4.2 Object Fact Diagram . 117
4.4.3 Fact Type or Independent Fact Kind 117
4.4.4 Entity Type . 117

4.5 Action Metamodel . 118
4.5.1 Improvements in the AM . 118
4.5.2 Action Rule Diagram . 119
4.5.3 Action Rule Specification . 120

4.6 Implementation Metamodels . 126
4.7 Property Types . 127
4.8 Model Extensions . 128

5 Tool Implementation 129
5.1 Tool Selection . 129

5.1.1 Requirements for Tool Selection . 129
5.1.2 Current Tools on the Market . 132

5.2 Creating the Metamodel in SEA . 137
5.2.1 UML Typeset . 137
5.2.2 Extending Types . 138
5.2.3 Stereotype Profile . 138
5.2.4 Diagram Profile . 139
5.2.5 Toolbox Profile . 140
5.2.6 Shape Scripts . 141

5.3 Verification Model . 141
5.3.1 Model Verification . 141
5.3.2 Business Rules . 142
5.3.3 Test Model . 142
5.3.4 Construction Model . 143
5.3.5 Action Model . 144

5.4 Result . 145

II Implementing the Metamodel 147

6 Practice: Model Iterations 149
6.1 Model Iterations . 149
6.2 Practice: Medical Whole Sale (MWS) . 150

6.2.1 Introduction Case MWS . 150
6.2.2 Construction of Case MWS . 151
6.2.3 Operationalization Case MWS . 152
6.2.4 Conclusion and Further Research Case MWS 152

6.3 Practice: Real Estate (RE) . 153
6.3.1 Introduction Case RE . 153

12

6.3.2 Construction of Case RE . 153
6.3.3 Operationalization Case RE . 155
6.3.4 Conclusion and Further Research Case RE 156

6.4 Practice: Online Retail (OR) . 156
6.4.1 Introduction Case OR . 157
6.4.2 Operationalization Case OR . 157
6.4.3 Conclusion and Further Research Case OR 157

6.5 Practice: Retail Whole Sale (RWS) . 158
6.5.1 Introduction Case RWS . 158
6.5.2 Construction of Case RWS . 158
6.5.3 Operationalization Case RWS . 159
6.5.4 Conclusion and Further Research Case RWS 159

6.6 Practice: Whole Sale Administration (WSA) 160
6.6.1 Introduction Case WSA . 160
6.6.2 Construction of Case WSA . 160
6.6.3 Operationalization Case WSA . 161
6.6.4 Conclusion and Further Research Case WSA 161

6.7 Extending OER . 162
6.8 Gamification . 164
6.9 Findings . 165

III Results 167

7 Results 169
7.1 Research Questions Revisited . 169
7.2 Conclusions . 172

7.2.1 DEMOSL . 172
7.2.2 Metamodel . 173
7.2.3 Tooling . 174
7.2.4 Visualisation . 174
7.2.5 Experiences . 174

8 Follow-up 181
8.1 Recommendations . 181

8.1.1 DEMOSL . 181
8.1.2 Metamodel . 181
8.1.3 Tooling . 181

8.2 Future Research . 182
8.2.1 DEMOSL . 182
8.2.2 Metamodel . 182
8.2.3 Tooling . 183
8.2.4 Visualisation . 183
8.2.5 Experiences . 183

13

Bibliography 184

List of Figures 194

List of Tables 197

List of Equations 198

Listings 201

IV Appendix 209

A Validation Example 211

B DEMOSL 3.7 Grammar 213

C Grammar Metamodel 221
C.1 Element identification . 221
C.2 Element Names . 221
C.3 Reserved Words . 222
C.4 Grammar core . 224
C.5 Action Rule References . 233

C.5.1 DB RAC A1/T1 new rq . 234
C.5.2 DB RAC A1/T1 rq . 235
C.5.3 DB RAC A1/T2 st . 236
C.5.4 DB RAC A1/T1 pm . 237
C.5.5 DB RAC A3/T3 rq . 238
C.5.6 DB RAC A3/T3 pm . 239
C.5.7 DB RAC A3/T4 st A . 240
C.5.8 DB RAC A3/T5 st . 241
C.5.9 DB RAC A3/T4 st B . 242
C.5.10 DB RAC A6/T6 pm . 243
C.5.11 DB RAC A6/T6 st . 244
C.5.12 DB RAC A7/T7 rq . 245
C.5.13 DB RAC A7/T7 pm A . 246
C.5.14 DB RAC A7/T7 pm B . 247
C.5.15 DB RAC A7/T7 st . 248
C.5.16 DB RAC A7/T6 rq . 249
C.5.17 DB Volley A1/T1 rq . 250
C.5.18 DB Volley A1/T1 pm . 251
C.5.19 DM RAC A1/T1 new rq . 252
C.5.20 DM RAC A1/T1 rq . 254
C.5.21 DM RAC A1/T2 st (sl14) . 255
C.5.22 DM RAC A1/T1 pm . 256

14

C.5.23 DM RAC A1/T1 new rq . 257
C.5.24 DM RAC A1/T1 rq . 259
C.5.25 DM RAC A1/T2 st (sl46) . 260
C.5.26 DM RAC A1/T1 pm . 261
C.5.27 DM Pizza A1/T1 new rq . 262
C.5.28 DM Pizza A1/T1 pm A . 263
C.5.29 DM Pizza A1/T1 pm B . 264
C.5.30 DM Pizza A1/T2 st . 265
C.5.31 DM Pizza A1/T3 st . 266
C.5.32 DM Pizza A1/T1 pm . 267

D Exchange Metamodel 269
D.1 Model base . 269
D.2 Core collections . 270
D.3 Connection collections . 275
D.4 Core diagram collections . 275
D.5 Core validation collection . 278
D.6 Basic data types . 279
D.7 Elements . 282
D.8 Element Guid’s . 285
D.9 Diagram Guid’s . 289
D.10 Element identification . 291
D.11 Enumerations . 293
D.12 Names . 302
D.13 Relation Elements . 304
D.14 Diagram Elements . 311
D.15 Validation Result . 313
D.16 Diagrams . 314
D.17 Action Rules . 324
D.18 Extensions . 327

E Logical Metamodel 329
E.1 Core . 329
E.2 Construction Metamodel . 330
E.3 Process Metamodel . 335
E.4 Fact Metamodel . 337
E.5 Action Metamodel . 339

F Verification rules programmed 341
F.1 Construction Metamodel . 341
F.2 Action Metamodel . 344

F.2.1 Validation Code . 344
F.2.2 Model Convert . 345
F.2.3 Model to Specification . 346

15

F.2.4 Grammar to XML . 362
F.2.5 Model to XML . 364

G SEA implementation Metamodel 367
G.1 Profile . 369
G.2 Toolbox . 373
G.3 Diagrams . 381
G.4 Shapes . 382
G.5 ShapeScipts . 382

G.5.1 Elements . 383
G.5.2 Extra Elements . 410
G.5.3 Connectors . 424
G.5.4 Extra Connectors . 441

16

Acronyms

ACD Actor role Competence Diagram
AFD Actor role Function Diagram
ALD Application Layer Diagram
ANTLR ANother Tool for Language Recognition
AM Action Model
API Application Programming Interface
AR Action Research
ARK Action Rules Kind
ARS Action Rules Specification
ARD Action Rules Diagram
AT Attribute Type
ATK Aggregate Transaction Kind
BCT Bank Contents Table
BLD Business Layer Diagram
BMP BitMaP image file
BPM Business Process Modelling
BPMN Business Process Model and Notation
BRM Business Rule Management
CAR Composite Actor Role
CM Construction Model
DEMO Design and Engineering Methodology for Organisations
DEMOSL DEMO Specification Language
DFD Data Flow Diagram
DSR Design Science Research
DTD Document Type Definition
EBNF Extended Backus - Naur Form
EAR Elementary Actor Role
EE Enterprise Engineering
EEi Enterprise Engineering institute
EEWC Enterprise Engineering Working Conference
ECF Elementary Construction Flaw
ERD Entity Relation Diagram
ERP Enterprise Resource Planning
ET Entity Type
ETK Elementary Transaction Kind

17

EO Enterprise Ontology
FBM Fact Based Modelling
FC Flowchart
FK Fact Kind
FM Fact Model
FQDN fully qualified domain name
GCMF General Conceptual Modelling Framework
GDPR General Data Protection Regulation
GSK General Step Kinds
GUID Global Unique IDentfier
ICT Information and Communication Technology
IAM Identity Access Management
IDEF Integration Definition
IFK Independent P-Fact Kind
ISO International Organization for Standardization
IUT Information Use Table
MU Model Universe
NEN NEderlandse Norm
OCD Organisation Construction Diagram
OER Organisational Essence Revealing
OFD Object Fact Diagram
OHD Organisation Hierarchy Diagram
ORM Object Role Modeling
PM Process Model
PK Product Kind
PNG Portable Network Graphics
PPTX PowerPoint XML Presentation (Microsoft)
PSD Process Structure Diagram
PSI-theory Performance in Social Interaction theory
PSK Process Step Kind
QR Quantitive Research
SEA Sparx Enterprise Architect
SIB Scope of Interest Boundary
SRD Security Role Diagram
SoI Scope of Interest
SVG Scalable Vector Graphics
ROME Return On Modeling Effort
RPSK Revoke Pattern Step Kind
RSK Revoke Step Kind
TEoO The Essence of Organisation
TLD Technology Layer Diagram
TK Transaction Kind
TPD Transaction Pattern Diagram
TPT Transaction Product Table

18

TKSK Transaction Kind Step Kind
TPSK Transaction Process Step Kind
UI User Interface
UML Unified Modelling Language
VBA Visual Basic for Applications
VISI ‘Voorwaarden scheppen voor de Invoering van Standaardisatie ICT in de

bouw’
VSDX Microsoft Visio XML Drawing
WIS Work Instruction Specification
WOSL World Ontology Specification Language
XML Extensible Markup Language
XMI XML Metadata Interchange
XSD XML Schema Definition
XOER eXtended Organisational Essence and Revealing

19

Publications

During this research we published intermediate results in the following papers and con-
ferences:

Enterprise Engineering Instituut:
[1] - J. L. G. Dietz and M. A. T. Mulder. DEMO Specification Language 3.7.
2017

EEWC 2018, Enterprise Engineering Working Conference:
[2] - M. A. T. Mulder. ‘Validating the DEMO Specification Language’. In:
Enterprise Engineering Working Conference. Springer, 2018, pp. 131–143

FBM 2018, On the Move to Meaningful Internet Systems, Fact Based Mod-
elling:

[3] - M. A. T. Mulder. ‘Towards a Complete Metamodel for DEMO CM’.
in: OTM Confederated International Conferences’ On the Move to Meaningful
Internet Systems’. Springer, 2018, pp. 97–106

EEWC 2019, Enterprise Engineering Working Conference:
[4] - M. A. T. Mulder. ‘A design evaluation of an extension to the DEMO
methodology’. In: Advances in Enterprise Engineering X. Advances in Enterprise
Engineering XIII. Springer, 2019, pp. 55–65

EEWC 2020, Enterprise Engineering Working Conference:
[5] - Mark.A.T. Mulder and Henderik.A. Proper. ‘Evolving the DEMO Specific-
ation Language’. In: Enterprise Engineering Working Conference. 2020

PoEM 2020, International Federation for Information Processing WG 8.1
working conference on the Practice of Enterprise Modelling:

[6] - Mark.A.T. Mulder and Henderik.A. Proper. ‘Towards Enterprise-Grade Tool
Support for DEMO’. in: IFIP Working Conference on The Practice of Enterprise
Modeling. Springer. Nov. 2020, pp. 90–105. doi: 10.1007/978-3-030-63479-

7_7
CAiSE 2021, International Conference on Advanced Information Systems En-
gineering:

[7] - Mark.A.T. Mulder and Henderik.A. Proper. ‘On the Development of
Enterprise-Grade Tool Support for the DEMO Method’. In: CAiSE 2021. 2021

SoSym 2021, Special Section on PoEM 2020:
[8] - Mark.A.T. Mulder and Henderik.A. Proper. ‘On Enterprise-Grade Tool
Support for DEMO’. in: Journal Software and Systems Modeling. 2021

21

Paper Trail

As part of the research conducted towards this Thesis, several papers have been authored
and published. Below, we provide a mapping showing how each of these papers contrib-
utes to the content of this thesis.

M. A. T. Mulder. ‘Validating the DEMO Specification Language’. In:
Enterprise Engineering Working Conference. Springer, 2018, pp. 131–143

From paper section To thesis
1 Introduction section 1.2.2
1.1 Aspect models section 2.1.3
1.2 Problem statement section 1.4.1
1.3 Observations section 3.2
1.4 Research Design section 1.5
2 Notion of metamodel section 2.5
3 DEMOSL inconsistencies section 3.3
3.1 Metamodel section 3.3.1
3.2 Construction Model section 3.3.2
3.3 Process Model section 3.3.3
3.4 Action Model section 3.3.5
3.5 Fact Model section 3.3.4
4 Conclusions and future research sections 7.2, 8.1 and 8.2

Table 1: Paper [2] trail

23

M. A. T. Mulder. ‘Towards a Complete Metamodel for DEMO CM’. in:
OTM Confederated International Conferences’ On the Move to Meaningful
Internet Systems’. Springer, 2018, pp. 97–106

From paper section To thesis
1 Introduction sections 1.2.2 and 2.1.3
2 Research Design section 1.5
3 Extending DEMOSL sections 2.5 and 4.2.1
3.1 Extending the verification rules section 4.1.2
3.2 DEMO Exchange Model section 4.1.4
4 Extending DEMOSL for the CM chapter 4
4.1 Transaction Kind section 4.2.5
4.2 Aggregate Transaction Kind section 4.2.6
4.3 Elementary Actor Role section 4.2.7
4.4 Composite Actor Role section 4.2.8
5 Conclusions and future research sections 7.2, 8.1 and 8.2

Table 2: Paper [3] trail

M. A. T. Mulder. ‘A design evaluation of an extension to the DEMO
methodology’. In: Advances in Enterprise Engineering X. Advances in
Enterprise Engineering XIII. Springer, 2019, pp. 55–65

From paper section To thesis
1 Introduction sections 1.2.2 and 6.9
2 Research Method sections 1.5 and 6.2
3 Model iterations section 6.1
3.1 Iteration A section 6.2
3.2 Iteration B section 6.3
3.3 Iteration C section 6.4
3.4 Iteration D section 6.5
3.5 Iteration E section 6.6
4 Extending OER section 6.7
5 Conclusions and future research sections 7.2, 8.1 and 8.2

Table 3: Paper [4] trail

24

Mark.A.T. Mulder and Henderik.A. Proper. ‘Evolving the DEMO Specifica-
tion Language’. In: Enterprise Engineering Working Conference. 2020

From paper section To thesis
1 Introduction section 1.2.2
2 Research background sections 1.5 and 5.1.1
3 MU theory section 2.3
4 Perspectives on DEMO models section 2.2
5 Overview of the metamodels chapter 4
5.1 High Level Ontological
metamodel

sections 2.6 and 4.1.1

5.2 Ontological metamodel sections 2.6 and 4.1.1
5.3 Data Exchange metamodel sections 2.6 and 4.1.4
5.4 Visualisation metamodel sections 2.6, 4.1.3, 4.2.2, 4.2.3, 4.2.8, 4.3, 4.3.2,

4.3.3, 4.4.1, 4.4.2, 4.5, 4.5.1 and 4.5.2
5.5 Visualisation Exchange
metamodel

sections 2.6 and 4.1.4.2

5.6 Models and exchange models –
6 Reflection sections 7.1 and 8.1
7 Future Research section 8.2
8 Conclusion section 7.2

Table 4: Paper [5] trail

Mark.A.T. Mulder and Henderik.A. Proper. ‘Towards Enterprise-Grade
Tool Support for DEMO’. in: IFIP Working Conference on The Prac-
tice of Enterprise Modeling. Springer. Nov. 2020, pp. 90–105. DOI:
10.1007/978-3-030-63479-7_7

From paper section To thesis
1 Introduction section 1.2.2
2 DEMO sections 1.2.2, 2.1.1 and 2.1.3
3 The DEMO Meta-Model chapter 4
4 Requirements for Tool Selection section 5.1.1
5 Considered Tools section 5.1.2
6 Implementation sections 5.2, 5.2.1, 5.2.3, 5.2.6, 5.3.1, 5.3.2

and 5.3.5
7 Cases sections 6.1 to 6.6
8 Conclusions and Future Research sections 7.2 and 8.2

Table 5: Paper [6] trail

25

Mark.A.T. Mulder and Henderik.A. Proper. ‘On the Development of
Enterprise-Grade Tool Support for the DEMO Method’. In: CAiSE 2021.
2021

From paper section To thesis
1 Introduction sections 1.2.2 and 1.5.4
2 Enterprise-Grade Tool Support sections 1.5, 2.8 and 5.1.1
3 DEMO Background sections 1.2.2, 2.1.1 and 2.1.3
4 Meta-Model Extensions sections 2.2, 3.3.2, 4.2.8.1, 4.5.3, 4.6 and 5.2.5
5 Visualisation sections 3.3.6, 4.1.3 and 6.8
6 Model Exchange section 4.1.4
7 Conclusions and Future Research sections 7.2 and 8.2

Table 6: Paper [7] trail

Mark.A.T. Mulder and Henderik.A. Proper. ‘On Enterprise-Grade Tool
Support for DEMO’. in: Journal Software and Systems Modeling. 2021

From paper section To thesis
1 Introduction sections 1.2.2 and 1.4.1
2 Research Methodology section 1.5
3 Enterprise-Grade Tool Support section 2.8
4 DEMO sections 1.2.2, 2.1.1 and 2.1.3
5 The DEMO Meta-Model chapter 4 and section 4.1.1
6 Tool Selection Requirements section 5.1.1
7 Considered Tools section 5.1.2
8 Implementation sections 5.2, 5.2.1, 5.2.3, 5.2.6, 5.3, 5.3.2 and 5.4
9 Summary of Experiences section 7.2.5
10 Cases sections 6.1 to 6.6
11 Conclusions and Future Research sections 7.2 and 8.2

Table 7: Paper [8] trail

26

Chapter 1

Introduction

1.1 Background

This thesis is concerned with the Design and Engineering Methodology for Organisations
(DEMO) methodology, and more particularly how its ways of thinking, modelling, and
working are connected to the way of supporting (fig. 1.1) [9]. The way of modelling is about
the notation of the models, the way of working is about the path from reality towards the
model. Together they are called a methodology and the methodology is contained in the
way of thinking. In DEMO the way of supporting is neglected. The automated support of
modelling is becoming an essential need for business analysts. Models of the organisation
of large enterprises are beyond the capability of the human brain. Ensuring the internal
correctness of the models by verification is no longer a feasible task for a project team.
Moreover, the exchange of these models in any, digital or physical, document is too
complex for anyone. Therefore, we did research on this subject to make the automated
support of modelling, verification and exchange of DEMO models possible. Business
analysts, whether or not using the DEMO methodology, should use all these ways in their
daily practice.

Figure 1.1: Five Ways of the DEMO methodology

27

When conducting a business analysis, analysts need to document all knowledge domains of
the organisation that stakeholders need to know about, i.e. the overall business needs [46].
Modelling involves abstracting from reality, while focusing on those elements that are
relevant to the purpose [10, 11]. It is nearly impossible to model all the knowledge domains
of an organisation. It is only possible to model some of them and describe others vaguely at
most. Therefore, when we try to model an organisation from a holistic (as possible) point
of view, we use only the parts of the organisation that can be described and formally
modelled. Words can describe knowledge, but a description in an analysable model is
preferred. Although AI has already come a long way towards the interpretation of plain
texts and big data, writers and readers may still understand the semantics of information
in different ways [47]. When modellers create a model of this information, they act as
interpreters of the organisational information. By definition, modelling languages limit
interpretations of modelled parts; the resulting model can, therefore, have an unambiguous
interpretation. Every knowledge domain has its own characteristics and, therefore, needs
its own suitable modelling method (e.g. one cannot model data knowledge using process
modelling methods and vice versa). Consequently, we need multiple modelling methods
or ontologies to model the knowledge domains of an organisation.
As we do a walk-through of an organisation, we will see multiple knowledge domains (e.g.
processes; data; business rules; applications; interfaces; infrastructure; flows). Business
Process Modelling (BPM) claims to capture business processes [48]; Fact Based Model-
ling (FBM) claims to capture data [49]; ArchiMate claims to capture the functional side
of businesses, applications, and infrastructure [12]; Business Rule Management (BRM)
claims to capture functional requirements [50]; and the Design and Engineering Meth-
odology for Organisations (DEMO) claims to capture the essence of business processes,
data, and business rules [25, 9]. These knowledge domains jointly describe the same
organisation. All models of each knowledge domain should have connections [51] to adja-
cent domains. Unfortunately, no single model covers all knowledge domains as each only
focuses on its own domain.
So far, the promising integrated modelling solution has been Enterprise Engineering
(EE) [52, 53, 54, 55, 56] with its DEMO methodology. This scientific methodology puts,
among other things, process aspects, data structure, and business rules together to de-
scribe an organisation coherently and comprehensively in the sense of ‘as holistically as
possible’.

1.2 The DEMO Methodology

1.2.1 Viewpoints on an Organisation

An enterprise can gain correct insight into its operational processes by modelling the
way it has been organised. The more complex this organisation, the greater the need for
models of the organisation [57]. The acquired insights into the organisation can be about
various knowledge domains and, therefore, need multiple viewpoints on that organisation.
Regrettably, process models often only use representation of process diagrams from an
implementation viewpoint and, therefore, do not reduce complexity. When business ana-

28

lysts complete process diagrams, they subsequently repeat the modelling effort for other
processes resulting in a collection of independent, but possibly related, process diagrams
of the organisation. These process diagrams, then, do not enhance the comprehensibility
of the overall processes as one is not able to grasp the whole viewpoint of the process
model at once.
Next to this process modelling exercise, a data viewpoint can be used to collect the data
structures of the organisation. Organisations tend to reduce data modelling activities
to data structures that need to be automated. Business modellers usually skip the data
models of the business as the need for data models is most manifest in the automation field.
The collected data models are stored separately from each other, are neither compared
nor aligned, and there is no internal drive to achieve completeness of this viewpoint in the
organisation. In the end, the data model consists of various fragmented, partial models.
Another step in obtaining insight is gathering business rules from the organisation. Busi-
ness analysts often obtain these rules in the context of an application. Once analysts
have determined the boundaries of an application, the business rules for data entry and
internal workflow will either be described in a design document or will be programmed
directly. The business rules, written as application rules, are disconnected from the pre-
viously defined processes or data structures and can rarely be found in the description
of these models. Due to the disconnected models, the organisation implements several
partial applications that in total cover every functional aspect of the organisation and
some applications that cover multiple functional parts within the organisation. The or-
ganisation might have or not have any documentation of the present applications, but
this documentation will be likely scattered around the organisation and potentially lack
any coherence between the descriptions. Subsequently, this kind of scattered low-detailed
application documentation can be collected but that does not mean it enables one to
achieve insight into the organisation.
Maintaining an as holistic as possible overview of what one has modelled also needs
complexity reduction which should be an intrinsic property of a viewpoint. Although
models can be used to reduce complexity, they often only reduce complexity on a specific
viewpoint and increase complexity by adding new concepts. People working in an organ-
isation may often perceive the number of final concepts and corresponding explanations
in a model to be more complex than the operational organisation [58]. This number of
concepts likely reduces usability and increases the chance of necessary recreation of the
models when needed in the future. Therefore, one needs to use a coherent modelling
methodology with a minimal number of concepts.
Moreover, to have and maintain the overview of a model leads to the formulation of
practical requirements this model should meet. First, modelling a business process as a
whole requires a modelling methodology that can reduce complexity to such an extent
that one can divide the model into sections that can be comprehended and recognised by
individuals within the organisation. One should do this sectional modelling without losing
the connection to the complete model of the organisation [59]. Furthermore, with regard
to data, one needs to model the structure in such a way that allows the complete model
to remain preserved while one can show partial models in diagrams. Subsequently, the
information must be comprehensively structured from the viewpoint of business processes

29

themselves. The model of an organisation needs a single set of all elements, relations, and
viewpoints, e.g. diagrams, allowing for references to this repository of the created model
viewpoints. An internally sound and structured metamodel of this repository will lead to
insightful models.
However, current modelling methods and diagram techniques mainly aim at partially
modelling unique viewpoints of the organisation. Let us look at some examples:

a) BPM is widely used to describe the implemented process of an organisation. It
is particularly useful in describing performed process steps of individuals or the
kinds of jobs within the organisation or department. The description language and
drawing technique of BPM are capable of describing the functional perspective of
an organisation [60].

b) Data models, such as Unified Modelling Language (UML) class diagrams, are used
to describe the information structure of organisations. These diagrams are capable
of capturing the structure of the information from an object-oriented viewpoint.
When these data are stored in a relational database, the data models are often
described in an Entity Relation Diagram (ERD). These diagrams illustrate the use
of a modelling technique depending on the target solution or implementation instead
of a business problem or situation [61].

c) A BRM application captures all business rules to be able to describe them all. This
way of working leads to rules without any link to a process or a data structure.

These examples show that each model has its own strength and has to be combined with
other models to give the required insights into the organisation.

1.2.2 DEMO and its Development

The DEMO [25, 9] method is a core method (based on a theoretically founded
methodology) within the discipline of EE [54]. The DEMO methodology focuses on the
creation of so-called essential models of enterprises. The latter kind of models aim to
capture the organisational essence of an enterprise by leaving out (as much as possible)
details of the socio-technical implementation. The organisational essence is then expressed
primarily in terms of the actor roles involved, as well as the business transactions [13] (and
ultimately in terms of speech acts [62]) between these actor roles. More specifically, an
essential model comprises the integrated whole of four aspect models: the Construction
Model (CM), the Action Model (AM), the Process Model (PM) and the Fact Model (FM).
Each aspect model involves its own kinds of diagrams and tables, and one or more cross-
model tables, providing viewpoints on the complete model. The aspect models overlap
in elements; specifically, the concept of transaction kind appears in all aspect models;
therefore, being the de-facto integration point of the model as a whole. The methodology
is discussed in more detail in section 2.1.
DEMO has strong methodological, and theoretical, roots [13, 25, 54]. At the same time,
there is an increasing uptake of DEMO in practice as well. The latter is illustrated by
the active usage (and certification) community1, reported cases concerning the use of

1http://www.ee-institute.org/en

https://www.linkedin.com/company/enterprise-engineering-institute

30

DEMO [14, 15, 9], as well as the integration with other mainstream enterprise modelling
approaches such as ArchiMate [16, 51] and BPMN [17, 63, 64, 18]. Meanwhile, DEMO has
gained a proven track record in process (re)design, software specifications based on the
organisation, modelling business rules and proving compliance to, e.g. the General Data
Protection Regulation (GDPR) [65] and other International Organization for Standardiz-
ation (ISO) and NEderlandse Norm (NEN) norms [19]. Additionally, an early descendant
of DEMO, called ‘Voorwaarden scheppen voor de Invoering van Standaardisatie ICT in
de bouw’ (VISI), has evolved into the ISO 29481-2:20122 (BIM related) standard for the
construction sector.
The DEMO Specification Language (DEMOSL) defines the accompanying integrated
modelling environment. As such, it should allow for the integration of the different
DEMO models used in organisations when applying DEMO, while also enabling tool
support, visualisation, as well as the exchange of models. The studied version of DEMO
is called DEMO-3. Its specification language is published in [1].
DEMO [66] is currently Enterprise Engineering’s key methodology. In this thesis we ex-
amine version 3 of DEMO. DEMO is a method modellers use to capture an organisation
from four viewpoints, or aspect models. First, the CM models how subjects, with actor
roles, in the organisation communicate with each other through standard communication
patterns, called transactions. These diagrams show the dependencies between roles in
execution and in information. The high abstraction level makes this a compact diagram
in relation to the implementation of the organisation. The PM models show the relations
between the process steps of interrelated transactions. This is used to explain the de-
pendencies between transactions together with partial business rules. The FM describes
information structures and the ways in which this information is created by the products
of transactions. This model is often compared to a data model although it has only a
partial match with that type of model. Finally, completing the model, the AM models
business rules and work instructions concerning data structures and transactions. Per
non-trivial process step minimal one specification shows the input and conditions to pro-
ceed in the transaction pattern or advance to other transactions. This specification is
used to model all details of the organisation. The integrated model comprises these four
aspect models and together they represent the essence of an organisation.
The DEMO methodology claims that the description of the organisation will comply with
five properties. All aspect models have related properties that make the model a coherent
integrated whole. The transactions of the CM connect the PM and the FM. The trans-
action steps of the AM connect to the PM and the FM from the detailed business rules.
Next, DEMO clearly defines all model components in a consistent way throughout the
whole model. Therefore, the whole DEMO model is claimed to be consistent [9]. Further-
more, the methodology is comprehensive, as it has enough components to fully describe
the essence of the organisation. Despite its comprehensiveness, the methodology is still
concise as it has just enough components that describe the organisation. Finally, Dietz
designed DEMO to describe the essential parts of the organisation. These parts are likely
to be stable in the future of the organisation.

2https://www.iso.org/obp/ui/#iso:std:iso:29481:-2:ed-1:v1:en

31

The history of DEMO is broader than Enterprise Engineering (EE). The development
of DEMO took place between 1990 and 2004 [67]. Its inception can be traced back to
1992 when prior work on the conceptual modelling of Information Systems was trans-
ferred to that of the organization as a social system. “The development of DEMO is
an advancement of the SMARTIE project, of which the overall goal was to ‘search for
sound theoretical foundations for the discipline of Information Systems Engineering’. The
period from 1990 to 1994 is marked by the theoretical struggle to combine the formal and
mechanistic SMARTIE model with Habermas’ theory of communicative action.”[13]
From its very inception, the DEMO methodology has been applied to various domains.
Its application started with the conceptual modelling of information systems (1990) and
the use evolved through social systems, system engineering, business process redesign and
modelling, to the modelling of business processes and ontology combined with object role
modelling (2004).
By 2004 DEMO was “... characterized as positivist, constructive conceptual development,
as the resulting blueprint of an organization is independent of the analyst. This is only
possible within a realist ontological position, which DEMO bases upon from the systemic
theory of Bunge. Although DEMO does not question its means of application, it easily
fits within a technocratic management tradition that regards an organization as the means
to achieve corporate goals. DEMO’s abstraction from human beings to rational actors
dismisses any social complications that may arise within an organisation. Accordingly,
it primarily regards organization as a problem of coordination.” [67] Although DEMO
is a useful methodology, the “... research indicates, practitioners apply a combination of
various methods, techniques, and perhaps methodologies to tackle problems.” The demand
for extensibility and interoperability was already present in 2004.
Analysts have modelled in DEMO for about 25 years now for smaller and larger organ-
isations. While most cases are proprietary, over a dozen reports on the practical use
and result of DEMO are provided by the Enterprise Engineering institute (EEi) website
“http://www.ee-institute.org”. To manually model larger organisations (i.e. drawing by
hand or with a simple drawing tool) is becoming difficult. It is almost impossible to
verify the model, keep partial models consistent, apply all syntactic and semantic rules,
and keep track of all details. This complexity needs tool-supported DEMO modelling.
Therefore, we need an internally sound method and metamodel, because it is complicated
to automate non-consistent methods, notations and techniques. The automation effort,
the DEMO tool, needs a metamodel to be able to contain, verify, and communicate the
DEMO model. As a result of automation, a verified model could be executed in a workflow
engine, primarily but not exclusively limited to a DEMO workflow engine [39]. Moreover,
the verified model can be used to feed follow-up modelling efforts in data and business
rule areas [63]. In this thesis we use the terms of validation and verification from the
IEEE standard 24765 [20] which defines verification as “confirmation, through the provi-
sion of objective evidence, that specified requirements have been fulfilled” and validation
as “confirmation, through the provision of objective evidence, that the requirements for
a specific intended use or application have been fulfilled”. Therefore, to allow for the
creation and direct or indirect execution of DEMO models, one needs models that are
validated (but that is beyond the scope of this thesis) and verified, containing all aspect

32

models, enhancing the usability of the methodology.

1.2.3 Knowledge Base

In the period 1994–2019, most publications on the subject of DEMO involved papers in
conference proceedings, journal articles, book chapters, books, and theses. The philo-
sophical base was finished in 1996 [68]. This work led to the first version of DEMO [13].
Thereafter, several books on DEMO were published in 2006 [25] and in 2013 [26]. Al-
though DEMO was developed at the University of Delft as we mentioned earlier, other
universities have joined the effort (Madeira, Prague, Saint Hellen, and the University of
Pretoria). Currently, many master students and PhD students are involved in DEMO
research or associated parts of it. Starting from the DEMO 2 book [25], the World On-
tology Specification Language (WOSL) was introduced and followed by a more detailed
specification of the DEMO ontological metamodel in 2015 named DEMOSL 3.1. This
specification has received updates in the years that followed. This research focusses on
the 2017 DEMO version 3.7 as in [1], [69], [26] and also takes into account definitions and
explanations from DEMO version 2 [25].
DEMO has proven to be a suitable method for modelling the construction of an organ-
isation. Various research activities (e.g. [21]) have verified the usability of the DEMO
method itself.
The description of the DEMO method is used in various PhD theses like Hommes [30],
Terlouw [70, p31-38], Kervel [39, p65-78], Reijswoud and Dietz [13, p79-82], Mulder [21,
p46-58], Jong [71, p23-32], and Ettema [72, p122-124]. An extensive summary of the
DEMO theory is presented in section 2.1.

1.2.4 Practice

In daily EE practice, experts use DEMO aspect models to get insight into the complexity
of organisations. Modelling often starts with the CM and PM because most business
managers think in terms of processes. The modelling is then extended with the FM to show
the connection with data structures (the area of information analysts and programmers)
and to reveal the data knowledge domain. Modellers seem to rarely use the AM in practice
because of the vast amount of work associated with it. The readability and expressiveness
of the text version of the AM is low for a large number of stakeholders. Therefore, this
aspect of modelling is executed very late in the process or not at all.
Also, the available toolset appears insufficiently capable of modelling large organisations;
the current tools do not comply with the specifications of DEMOSL 3.7 [1] and they do
not support the practice of modelling adequately enough.
Automated support for building an organisation model comes with some requirements.
Teams working on a model using a tool to create the model while complying with its
specification require a central repository containing all model components. Moreover, the
verification implementation is needed to check the repository model against all verification
rules. More requirements come to mind when choosing such a technical environment. All
these aspects together express a need for a tool that can support the DEMO method.

33

1.3 Research Focus

We have searched for a single metamodel for all notations at a single point in time. This
search conjectured not only that this model does not exist, but also that not all methods
have a complete metamodel themselves. Hommes [30] started a metamodel for some
aspect models but did not finish this work. As a result, there is no publicly available,
and complete, metamodel for DEMO. When investigating DEMO, we also found that
the ontological metamodel does not cover the complete modelling, is not entirely coherent
between aspect models and is inconsistent in some ways [2]. This finding led to the
question whether a complete, coherent, concise, consistent, and essential metamodel could
be created. These claims should then be traceable to the aspect models and metamodel
of DEMO. Therefore, completing the DEMO metamodel is a necessary step towards this
overall metamodel.
In using DEMO to model an organisation, we found some shortcomings, mistakes, and
other mishaps in the documentation and usage of the methodology. This research wants to
focus on the practical usage of DEMO and solve the shortcomings from a scientific stand-
point to be able to use this methodology in more significant depth to model organisations.
To fix these shortcomings, we have to validate the current models and metamodels to find
the gaps in their methods and notation. By validating and expanding the methodology,
notation, and metamodel of DEMO, we can use the methodology to model, exchange,
and execute business processes. To be able to take all these steps, we need to have a
formal definition of the notation, syntax, and semantics of DEMO. We can use formality
for enterprise modelling aspects as being intersubjectively understandable and machine
processable [22]. This will reduce its inconsistencies and make DEMO an even stronger
methodology.
In conclusion, this research has focussed on creating this metamodel together with the
specification rules that come with the model. It also includes the usage of the metamodel
in practice and contains a fully implemented metamodel that can be used to exchange
the DEMO models of an organisation. A few references to partial metamodels have been
made in this thesis to attempt to describe the exchange models or rules syntax. This
research has tested all presented models on usability in automated tools. The metamodel
is complete for the examples that have been used to create it. During this research, we
built a new DEMO tool as a verification and validation tool for checking the models on
the DEMOSL specification and for communicating the model with the organisation.
The combination of the complete methodology and the automated support of DEMO
could lead to a higher acceptance of the methodology in practice. The scope of this thesis
is too small to measure this change, but we have faith that the use of this methodology
will change the future of organisation modelling.

34

1.4 Research Objectives

1.4.1 Problem Statement

The focus of the research will be on the completeness, and correctness of the formalisation
of DEMO 3 models in DEMOSL 3.7 to accomplish automation of the verification, and
exchange of DEMO models using a automation tool. The research aims to make DEMO
usable to model organisations, in such a way that the models are complete, consistent,
verifiable, and comprehensible for stakeholders. When business analysts use the DEMO
methodology in practice, i.e. to model complex organisations, modelling tools are essential
to create a model within an acceptable time frame with an acceptable level of quality.
When one is creating a tool to support a methodology, the metamodels of all aspect models
and diagrams have to be aligned correctly to create the overall metamodel. Automation
means unambiguous logic and must, therefore, perfectly match aspect models. When
using the DEMO aspect models without tools, or with separate tools for a few aspect
models, one is, e.g. not likely to spot incoherence or the definition variances that obstruct
integration of the aspect models. Therefore, when developing such tool support, it is also
important to ensure that the respective metamodels of all aspect models, as well as the
associated diagrams and tables, are aligned in order to create an integrated and consistent
metamodel. Automated tool support also requires an unambiguous logic and must also
accommodate the different aspect models. Therefore, selecting a tool or tool base (on
which one builds a DEMO specific tool part) that can support a DEMO model is not
straightforward. Even more, developing a modelling tool based on a method’s metamodel
will also disclose possible limitations of the method and vice versa.
To be able to research integrated models, and in assessing the validity of the two arte-
facts (DEMOSL and associated tool support), driving the different design science itera-
tions [23], we did not limit ourselves to fictitious examples but specifically also included
(see section 6.1) real-world situations to enhance the modelling capability of a method.
We have decided to use organisations in need of an organisation model to conduct our
research. Therefore, the research will be invasive and results further in the process will
be influenced by the previous results. The Design Science Research (DSR) approach as
described by Hevner et al. [73], Aken and Andriessen [74], and Wieringa [24] are methods
that support this type of research, as will be explained in section 1.5.

1.4.2 Main Research Question

The main research question of this thesis is:

How can we formalise the DEMO metamodel in such a way that automated
tools can assist modelling in DEMO and that DEMO models can be logically
verified and exchanged for practical usage?

Below, we explain this research question in more detail.

35

How can we formalise... Formalising the metamodel is necessary to
contain all existing DEMO models. A form-
alised metamodel serves as a guide for mod-
ellers to restrict their design freedom in such
a way that the semantics of a model are con-
ceived equally amongst modellers.

...the DEMO metamodel... The current metamodel covers only the
high-level ontological level; we have to ex-
tend it to cover the ontological metamodel
level. Also, there appears to be a need to
extend the metamodel to represent more
notions of an organisation in the DEMO
model.

...in such a way that automated tools can
assist modelling in DEMO...

Automation helps the modeller when the
model complexity exceeds cognitive capab-
ilities. Completeness of the model is better
when it is machine checked.

...and that DEMO models can be logically
verified...

First predicate logic is a way to reason about
the models.

...and exchanged for practical usage Exchanging models with other tool compon-
ents like simulation, execution, translation,
and possible other targets is needed to op-
timise methodology usage. Since we are not
doing fundamental research, modelling has
to have practical relevance.

Although the representation of the models is part of the DEMOSL metamodel, we
decided to define the representation explicitly in this thesis. As will be explained in
section 2.5 a metamodel should facilitate the model exchange and that can be automated
or the exchange of a visual representation of the model.

1.4.3 Research Questions

The books Enterprise Ontology [25], the more recently The Essence of Organisation [26],
and the Enterprise Ontology 2 [9] describe the DEMO methodology. This methodology
enables modellers to model the essence of an organisation integrally in terms of a number
of aspect models. We want to help the professionals with the creation of DEMO models.
We aim to to that with the creation of the tool to simplify modelling and, therefore,

Our research objective is to
formalise the metamodel of DEMO

in such a way that
DEMO models can be verified automatically and
DEMO models can be exchanged.

36

To attain this result, we have to answer the following detailed research questions:
� How can we create the metamodel in such a way that we can implement it in a tool?

This is important partly because the ontological level of the current metamodel
is too high to be useful. e.g. Implementation of ’Action Rule’ as a single entity
without any property types is less practical;

� How can we verify a DEMO model in such a way that it is beneficial, and not a
limiting factor, for modelling an organisation?
This is important because applying all rules of a DEMO model can be too restrictive
to benefit the modelling process. e.g. applying all rules of a DEMO model at once
requires the modeller to fill all attribute types and property types of a transaction
kind. Sometimes only high level information is available when modelling starts.
Being restricted by all rules would suffocate the modelling process;

� How can we use the DEMO model and the respective metamodel for automating
the modelled organisation or parts of it?
This is important because only a formal correct metamodel can be a base for follow-
up tooling.

See chapter 3 for a further extensive explanation of the reasons why the metamodel should
be extended.

1.5 Research Method

This thesis describes the formalisation of the metamodel of DEMO which can be seen as
an artefact in the sense of design science. The aim of this research project is to build this
artefact while maintaining its integrity. In this context, approaches such as Quantitive
Research (QR), exploratory research and explanatory research are less useful. QR, with
the aid of questionnaires, gives us insight into details of the perceived meaning of the
artefact and the way people either use or do not use it. That does not bring us any closer
to the validation of the core of the DEMO metamodel artefact. In other words, in this
research project we are not interested in the way people use the DEMO methodology.
Moreover, exploratory research could explain the DEMO design but would not be able
to improve it. Those aspects of explanatory research that are useful can also be found
in DSR. In the next section we will explain which DSR is most relevant to this research
project.

1.5.1 Design Science Research

Design Science Research is the embodiment of closely related cycles of activities to design
engineering artefacts [73]. The cycles and usage of these cycles are different depending on
the method one uses. Three mainstream methods within DSR could be relevant to our
research aim: Hevner et al. [73], Aken and Andriessen [74], and Wieringa [24]. In what
follows we will describe them and explain why we choose the application of Wieringa’s
approach to Design Science Research in our own research.

37

1.5.2 DSR according to Hevner et al.

The design science research paradigm [73] seeks to support the design and construction
of useful artefacts that can solve problems expressed as functional requirements. To solve
those problems, one needs to gain knowledge and understanding of the whole problem
domain where the specific problem resides as well as the solution domain in which the
artefact resides.
Design Science is aimed at conducting, evaluating, and presenting engineering artefacts.
Hevner et al. argue that the empirical sciences and the behavioural sciences are also of
relevance here. The design of an enterprise as a social system is also an engineering
artefact. Additionally, Hevner’s methodology contains guidelines to construct an artefact
and ways to assess its qualities as a solution for a problem.

Figure 1.2: Hevner DSR [73]

1.5.2.1 Design Science Cycles

Hevner et al. describe a three-cycle view with a design cycle, a rigour cycle, and a relevance
cycle. These cycles may be iteratively repeated several times to improve the solution to
a particular engineering problem.

1. The Design Cycle involves the design and construction of an artefact, followed by
an assessment of its function at an early stage. This assessment provides feedback
for incremental modifications and enhancements of the artefact. Alternative design

38

options can be investigated and rejected or accepted. This process continues until
an acceptable result is achieved.

2. The Rigour Cycle addresses the need for and identification of the use of proper
scientific foundations and formal methods for the construction of the artefact. This
rigour cycle allows for a distinction between science and (best) practices and is based
on scientific foundations.

3. The Relevance Cycle in DSR is an empirical assessment of the artefact and its
environment. This assessment involves meeting the validation of the requirements
and objectives of this research through field testing.

1.5.2.2 Design Science Guidelines

Design Science guidelines are necessary when creating an artefact. Design as an artefact
means that any engineering artefact is a designed and purposeful solution to a real and
relevant problem. After the creation of an artefact one must evaluate its design to assess
its qualities as a solution to this problem. Research in Design Science should provide
clear theoretical and methodological contributions to generally address problems and also
provide specific solutions to specific problems. The artefact must be constructed using
rigorous formal methods and it should be created from available means. There may
be non-deterministic processes at work. opposed to the deterministic calculation of a
solution. Finally, the results of DSR have to be suitably presented to various audiences
and stakeholders.

1.5.2.3 Design Science Artefacts

DSR distinguishes four types of artefacts. The first type are constructs that consist of
vocabulary, symbols, and grammars. The second type are models as abstraction and
representation of the real world using these constructs. Thirdly, artefacts can be methods
including algorithms and processes. Finally, DSR is also about instantiation of artefacts
such as prototypes and implementations.

1.5.3 DSR according to Aken and Andriessen

Aken and Andriessen characterise DSR as research on field problems with the emphasis
on the production of prescriptive knowledge. DSR provides the solution to these field
problems while the justification of the solution resides in its pragmatic validity. This kind
of research is aimed at answering ‘how’ as well as ‘what’ questions [74].

39

Figure 1.3: Ettema DSR for fuzzy problems, [72]

When searching for an explanatory theory, one starts by examining the interests, suspi-
cions, and assumptions at the so-called fuzzy front end. This step ends in a first set of
specifications which one uses in the first iteration of the design process [72].

1.5.4 DSR according to Wieringa

Design science, according to Wieringa, is the design and investigation of artefacts within
a context that are designed to interact with this context and should improve something
in that context.
“To do a design science project, you have to understand its major components, namely, its
object of study and its two major activities. The object of study is an artefact in context...,
and its two major activities are designing and investigating this artefact in context... For
the design activity, it is important to know the social context of stakeholders and goals
of the project, as this is the source of the research budget as well as the destination of
useful research results. For the investigative activity, it is important to be familiar with
the knowledge context of the project, as you will use this knowledge and also contribute
to it. Jointly, the two major activities and the two contexts form a framework for design
science.” [24]
An artefact is an object that solves a problem by interaction with the context of that
artefact. The same artefact may or may not solve another problem in another context
by interaction with that context. Or in Wieringa’s definition: “An artefact is something
created by people for some practical purpose. ... artefacts, are designed, and these designs
are documented in a specification.” [24] Designing an artefact may result in multiple
new artefacts that need to be designed. The resulting artefacts may answer knowledge
questions. Thereafter the artefact must be implemented, validated, and evaluated. The
implementation and hence the application of the artefact takes place in the original prob-
lem context, thereby validating that this application benefits the stakeholder goals if
implemented. The final evaluation of the artefact, involves the evaluation of the results
of the implementation with one or more stakeholders in the field. One can subsequently

40

use these results to improve the artefact.

Figure 1.4: Wieringa DSR, framework [24]

1.5.4.1 Design and Engineering Cycle

While designing, one investigates, creates and validates the design of the artefact(s) in
an iterative cycle. This problem-solving process cycle is a logical structure to be able to
engineer and design an artefact. The main task in this cycle is to understand the problem
and choose the right design to resolve the problem before implementation. Through
evaluation, we can learn from this implementation for the next cycle [24].

Figure 1.5: Wieringa DSR, engineering cycle [24]

Stakeholders A stakeholder consists of a person or group that is affected by the prob-
lem and the resulting artefact. The stakeholders’ goal is to invest in the solution of the

41

problem. These goals originate from, possibly conflicting, desires and are the primary
source for problem solution by engineers. They use the resulting artefacts in the ori-
ginal problem context. Using an artefact, may trigger new desires and consequently new
engineering cycles [24].

Implementation Evaluation, and Problem Investigation Problem investigation
retrieves the pre-involvement requirements, and the artefact design follows this process
step. After the design implementation, the implementation evaluation investigates the
achieved results of the use of the artefact. “The goal of implementation evaluation and
problem investigation is to build a scientific theory of real-world implementations and real-
world problems, respectively.” The use of single-case experiments is useful in this context
because they can provide deep insight into the mechanism of the behaviour of the artefact
within its context [24].

Artefact Design Artefacts are delimited by stakeholders requirements who, in turn,
may find it difficult to specify them. Therefore, the researcher has to formulate the
requirements as part of the design. The researcher has to justify the choices made in the
process by giving contribution arguments to each requirement [24].

Figure 1.6: Wierings DSR, problem-solving [24]

One operationalizes the properties of the artefact by specifying tests or indicators for
functional and non-functional requirements, respectively.

Artefact validation “The goal of validation research is to develop a design theory of
an artefact in the context that allows us to predict what would happen if the artefact were
transferred to its intended problem context” A validation model is a model between the
artefact and the real world. This validation model is used to predict the usability of
the artefact. The simplest validation model is an expert opinion by an expert panel.
Additionally, the single case experiment will also provide validation information. In all
cases, the researcher starts with laboratory conditions; scales come in at a later stage.
Finally, research should scale towards realistic situations.

42

Figure 1.7: Wierings DSR, scale up [24]

Conceptual Framework Within the research context, one needs a conceptual frame-
work to define structures. This framework, with definitions of concepts, is used to define
artefacts and their behaviour, their properties and other phenomena. This framework can
also be analysed in itself and is a “tools for the mind” [24]. Measuring the operational-
ized artefacts takes a lot of effort. Therefore, the artefact validity can be measured with
respect to the research goal and research questions.

1.5.4.2 The Empirical Cycle

“The empirical cycle (fig. 1.8) is a rational way to answer scientific knowledge ques-
tions.” [24] For this cycle, researchers need to know three things: goals, the desired
improvements and the already existing knowledge base. They also consider the contribu-
tion of the artefact to the knowledge base and the improvement to practice.

43

Figure 1.8: Wieringa’s DSR, empirical circle [24]

The research context of a design science research project may be utility-driven or curiosity-
driven. One tries to solve a knowledge problem and generalise it for an assumed population
of interest. The empirical cycle helps to focus on this task but is no checklist. Two
rules hold: created knowledge is only present after research execution and any knowledge
present may influence the research. Therefore, all events that could have influenced the
conclusions must be stated.

1.6 Thesis Structure

To find all relevant information on the subject of DEMO, the EE community functioned
as a solid base. The 2014 Enterprise Engineering Working Conference (EEWC) gave
insight into the information that is available within this community. The information in
DEMOSL 3.7 [1], DEMOSL’s origin Enterprise Ontology (EO) [25] and its successor The
Essence of Organisation (TEoO) [26] contains ample references to early work on DEMO
theory. Moreover, all twelve proceedings ‘Advances in Enterprise Engineering’ contain
relevant information about the attempts for progress and the history of DEMO. Searching
in the knowledge base of the domain makes all findings semantically relevant.
Subsequently, we consulted references to connecting subjects such as meta modelling [75],
set theory, logic, and modelling.
Some results from the DEMO knowledgebase are Wang’s exchange model [76]
and Figueira’s action rules [77].
Initially, we considered building a new computer-aided design tool with the necessary
modelling and verification support. To stick as closely as possible to the design of DEMO,
we chose to adopt the DEMOSL documentation as the backbone of the automation and
hoped to have all rules, legends, and the metamodel of DEMO. This first attempt at a
tool based on the metamodel that can accurately represent DEMO models turned out to
have omissions. These omissions triggered our research on the investigation of the full
DEMOSL information.

44

Explained in the information in the previous sections 1.5.2 to 1.5.4 we concluded in
section 1.5.1 that Wieringa’s DSR approach [24] matches our research objectives most.
In this thesis we have the objective of improving DEMO’s metamodel and its formal
representation, the validation of metamodels and the tooling of the DEMO methodology.
We defined these artefacts as the object of our study. The social context of the framework
was the DEMO professionals and their organisations. They used the method and needed
the results of the analysis. These artefacts and their context are visualised in fig. 1.6.
The knowledge base referred to by DSR was mentioned in sections 1.2.2 and 1.6. In the
design cycle, we chose to validate most artefacts, not to evaluate them. The only artefact
that we evaluated is the exchange-metamodel (see section 4.1.4). The artefacts that
this research provided are a DEMOSL proposal, containing an improved metamodel with
mathematical rules, a verification model, and a Sparx Enterprise Architect (SEA) model
that enables one to model DEMO in a tool. These models and rules are interconnected
(see section 8.2.5) and have been tested (see Appendices).
We started this research on the observation of limited automated support of the DEMO
modelling. We considered building new automation with the necessary modelling and
validation support. To stick as closely as possible to the design of DEMO we chose to
adopt the DEMOSL [1] documentation as the backbone of the automation and hoped to
have all rules, legends, and the metamodel of DEMO. This first attempt at a metamodel
that supposedly accurately represents DEMO models turned out to have omissions. This
triggered the investigation of the DEMOSL information. After we had described all the
omissions, we continued with the expansion of DEMOSL to support the specification of
automated storage and exchange of DEMO. We wanted to find all these omissions to
make the method better applicable and internally aligned. Therefore, we expanded the
specification and described most model aspects, thereby making the DEMO specification
more complete. This expansion included not only the ontological-metamodel and verifica-
tion rules but also the visualisation-metamodel needed to exchange the representations of
a DEMO model. This completed the problem investigation as described in section 1.5.4.1.
To be able to design the exchange model, we needed support from the community that
would be using the exchange model. Therefore, during the creation of the exchange model
artefact, a focus group commented on the usability of the artefact. This focus group
consisted of experts in DEMO modelling and experts in the field of process modelling
in VISI, which is a derivate of DEMO. The VISI experts had a software development
background and focussed on the usability of the exchange model in their products. This
group discussed and gave insight into the usage of the DEMO models and the requirements
for the exchange metamodel (see fig. 1.6).
The next logical step was to find a tool because an exchange model has only value in an
automated environment. Therefore, the specification of the metamodel and subsequent
implementation of a DEMO modelling tool was the carrier of the research project.
Next, we verified this metamodel with existing DEMO models. Here, the usage of auto-
mation and the implementation in an organisation gave us feedback on modelling using
the tool, and on the results of the diagrams we created.
Although the theoretical side of DEMO was very well-founded, to make the method more
usable, we considered the practical usability of the method and metamodel essential, as a

45

whole and for the aspect models themselves. Although various case studies showed the use
of DEMO [78, 79], the models were never integrally represented in the results nor were all
aspect models used. Therefore, we conducted several case studies to improve the usability
of the aspect models as well as the integral model and the repository (see section 1.5.4.1).
The case studies concerned a real estate organisation, a health care organisation and some
logistical organisations. During these intervening case studies, we tested all artefacts. We
used it to store the DEMO model to find an optimal, practical implementation that can
automatically verify the model. We have modelled these organisations and they served as
case-study subjects to show how the complete metamodel of DEMO can help to model
organisations and reuse DEMO models for their organisation.

Figure 1.10: Thesis Artefacts in their Environment

We performed the case studies as parallel single-case mechanism experiments (see
fig. 1.7) [24], mostly during implementations of Enterprise Resource Planning (ERP)
systems within the selected organisations. These ERP systems tend to have the most
substantial impact on organisations and have a significant failure rate. Improving the
implementation of ERP can be a significant contribution of DEMO to the world of In-
formation and Communication Technology (ICT).
These steps were iterated several times during the research project (see section 1.5.4.2)
Finally, we investigated the usability of this automation for building new DEMO models
together with other technologies and the representation of these models.
This thesis contains the results of the research conducted to obtain the PhD title.
Section 1.5 completes the introduction to this thesis.
Part I of the thesis describes the conceptual model. We start by explaining the DEMO
methodology and other notions in such detail that the artefacts can be understood. After

46

the introduction to the DEMO methodology, we evaluate the DEMOSL as-is, to find
most omissions from an automation standpoint. Starting from chapter 4 the metamodel
DEMOSL will be discussed in detail with all (logical) verification rules. The formalised
language, syntax, and semantics will be discussed per aspect model, diagram, and ele-
ment. Following the metamodel, section 5.3 shows all implemented business rules on the
metamodel. Chapter 5, which is the last chapter of Part I, describes the tool choice and
implementation of the metamodel in the add-ins on that tool. All artefacts in Part I have
been summarised in fig. 1.10. This figure gives an overview of the artefacts and their
dependencies.
Part II describes all case studies that were conducted to find or create DEMO models in
the real world. Five cases (i.e. real estate management; retail sale; medical production
firm) describe their particular modelling needs for their branch or organisational structure.
Chapter 6 ends with some practical problems that currently cannot be described correctly
in DEMO, but that we do need to register for future research.
Part III will revisit the research questions of section 1.4.2. After that, we will discuss
the conclusions of the research and present recommendations for tool use, methodology
adaptation, and practical usage of DEMO. Chapter 7, the last chapter of this thesis,
contains suggestions for future research.
The appendix lists the full implemented metamodel for reference purposes, including some
proprietary content. We did not add the appendices to the printed version of the book.
Readers that wish to go through all the appendices are welcome to request the pdf version
of these appendices.

47

Figure 1.9: Literature and their dependencies

48

Part I

Conceptual Model

49

Chapter 2

Conceptual Framework

In this chapter, we will look into DEMO, the Design and Engineering Methodology for
Organisations that is part of Enterprise Engineering (EE) as was described in section 1.2.2.
We will also look into the definitions and notions that are required to understand the
artefacts that have been created.

2.1 DEMO

As we explained in section 1.2.2, DEMO is a methodology with a rich history. DEMO
3, as used in this research, is based on the Performance in Social Interaction the-
ory (PSI-theory). We will first summarize the most relevant parts of the PSI-theory to
establish an understanding of the theory in the context of our research about the DEMO
metamodel [25]. Although we acknowledge that the theory presented in these sections is
very compact, our research does not focus on these parts of the theory and, therefore, we
decided to focus on the DEMO Specification Language (DEMOSL) part. Moreover, this
thesis is not a DEMO course and we will only briefly summarise the DEMO theorie that
we think are needed to understand the rest of the thesis. One can study one of the books
covering the theory of DEMO [25, 26, 9] to understand the whole methodology.

2.1.1 PSI-Theory

The PSI-theory constitute the foundation of Enterprise Ontology (EO) from a construc-
tion perspective. The PSI-theory divides an organisation into acts and facts that reach
commitments and agreements in predictable phases. One composes these agreements in
a logical order that demands the right responsibilities of the right subjects. Finally, the
subjects’ capabilities are appointed into three categories to make distinctions in decisions
and other actions. This standard pattern and production can be used anywhere within
the organisation to enhance communication between subjects. We call this pattern a
transaction.
The PSI-theory divides the world into two worlds: communication (c-world) and products
(p-world). Each of the c- and p-worlds may perform acts and produce facts. The com-
munication acts, performed by actor-roles, produce communication facts. The same rule

51

holds for the p-world. In short, actors perform communication and production acts,
thereby creating communication facts about the creation of production facts.
Furthermore, the PSI-theory defines the communication pattern between two actor roles.
Every commitment to reach a production result follows this universal pattern (see fig. 2.1).
A transaction evolves in three phases: the order phase with four communication steps,
the execution phase with one production step and the result phase with four communic-
ation steps. Whenever the request, promise, state or acceptation relating to the product
changes, one can revoke those steps to be able to change the commitment. The product
(p-fact) becomes existent once the actor roles have performed at least all steps of the
happy flow of the transaction as drawn in the middle section of fig. 2.1.
From the context of an organisation, an external actor role starts a transaction or self-
started actor role inside the organisation. Furthermore, every transaction can start an-
other transaction as part of its process flow, thereby creating a tree of executed transac-
tions.
The transactions are divided into so-called performa, informa, and forma levels. These
levels describe the typical activities of subjects to decide, calculate, and store, respectively.
The transaction ontology can be used for a service-oriented system organisation [80]. The
specification alone though is not enough to implement the services in a usable form. At
the system boundaries, it must be possible for humans to interact with the system where
these interactions must follow the universal transaction pattern as well as to communic-
ate within this pattern in a human-comprehensive manner. Therefore, one realises the
interface design around the transaction; also, all system transactions are designed in a
similar way and with the same universal transaction pattern in mind. This specification
allows one to communicate with the protocol but does not force the communication to be
the same on both sides of the transaction.

52

2.1.1.1 Universal Transaction Pattern

Figure 2.1: DEMO 3 universal transaction pattern

In the base of a transaction, the initiator starts the communication to obtain a product,
and the executor communicates and produces to deliver this product. We will now in detail
go through this universal transaction pattern at three levels: Happy flow, Standard
flow, and Revocation flow First, we will examine the happy flow, which consists of four
communication steps and one execution step. These steps are in bold in the diagram.
Next, we will enhance our view of the discussion paths and add four more potential
communication steps, the revocation step. Finally, we will include the three revocation
steps of each of the four possible types of revocation.

53

Legend: initial(in), request(rq), promise(pm), state(st), accept(ac)

Figure 2.2: Happy flow

Happy flow The happy flow as illustrated in fig. 2.2 consists of four communication
steps and an execution step. We will explain these steps in three phases: negotiation,
execution, and result phase. The first phase is the negotiation or order phase. The
next phase is the execution phase, followed by the final phase, the result phase. In the
order phase, the initiator sends a request to the executor. Upon receiving the request,
both initiator and executor negotiate the requirements for execution. The executor has
predetermined the form of the requirement (as in ordering from a menu), and the actor
roles only negotiate whether or not the request is within the boundaries of the menu. After
the negotiation on the requirements for execution, the executor approves the request. In
the happy flow, we assume that the executor can fulfil the request, and can promise that
the request will be executed and when an answer will be given. In the execution phase,
the executor does the actual processing of the request that is needed to provide a result.
After the negotiation and execution, the final phase is due, the result phase, and the
executor states the result, after which the initiator accepts the result. Hereafter, the
communication cycle is complete, the initiator has received the requested product, and
the executor probably waits for the next initiator to start this process all over again.

54

Legend: initial(in), request(rq), promise(pm), state(st), accept(ac),
decline(dc), quit(qt, reject(rj, stop(sp)

Figure 2.3: Standard flow

Standard flow In the standard flow as illustrated in fig. 2.3, we can identify four steps
in the order phase, we have the same execution phase and four steps in the result phase.
In this standard flow every actor role operates in turn. Because this is normal behaviour
we have called this flow standard. First, we take a look at the order phase. In the order
phase, the initiator makes a request for a product. When the executor can grant this
request (e.g. he/she believes he/she can execute), he will promise the requested product,
but when the executor cannot promise, he has to decline the request. The declined state
is a discussion state where the initiator can either quit and consider the transaction as
unsuccessful or alter the original request and resent it. These four steps are all part of
the order phase, and the involved actor roles, initiator and executor, reach an agreement
before the execution phase will start. After the conclusion of the order phase, the executor
can execute and state the result after which the initiator can judge this stated1 result.
The initiator can either accept the stated result or reject the result which, again, is a
discussion state between initiator and executor. In this last discussion state, the executor
can decide to restate the (unchanged) result or stop the transaction unsuccessfully if the
initiator does not accept the (re)stated result or if the executor is not able to convince
the initiator of the (re)stated result.

1‘stated’ has been replaced with ‘declared’ in DEMO 4

55

Revocation flow Until now, we have described both the happy flow in detail where
everything goes according to plan and the standard flow where we described the order
and result phase in more detail. Nevertheless, what happens if one wants to cancel one’s
request when the executor is still in the execution phase? That is the situation where the
four revocation patterns are applicable. The patterns provide a way to revoke actions in
the communication, no matter in what phase the communication cycle is. The response
to this revoke is what makes the pattern interesting. The executor of each revoke can
either refuse or allow the revoke. In the worst case scenario, all revocations can be active
at the same time, making the pattern very complex to understand.

Legend: revoke request(rvrq), refuse(rf), allow(al), initial(in)

Figure 2.4: Revoke request

Revoke Request The first revocation flow as illustrated in fig. 2.4 is the revoke of a
request by the initiator. This describes the withdrawal of the request, and when this
withdrawal is allowed, the communication path can only end in a quit. The result of this
revoke is, as seen from the executor, as if the request never took place. After the revoke
has been allowed, the initiator can continue with other business, and the executor has
to end all sub-transactions that were part of the underlying transaction. The cascading
consequences will not be discussed in this section.

56

Legend: revoke promise(rvpm), refuse(rf), allow(al), initial(in)

Figure 2.5: Revoke Promise

Revoke Promise Next to the initiator, the executor can also use revocation patterns
on the execution side of the communication pattern. The revoke promise pattern as
illustrated in fig. 2.5 allows the executor to revoke a previously promised request and
proceed to the decline of the request. This situation applies when in the execution-phase,
something unexpected happens that makes it impossible or undesirable to state the result.

Legend: revoke state(rvst), refuse(rf), allow(al), initial(in)

Figure 2.6: Revoke State

Revoke State The last revocation pattern is the revocation of a statement in fig. 2.6
where the result, once stated, is no longer valid. If this revoke is allowed, the promise
must be made again for a changed answer. This sequence is a revocation pattern that
goes from the result phase back to the order phase. In this situation, the actor roles will
not redo the negotiations but will repeat the promise, so that the executor can redo the
execution (e.g. to promise a new delivery time).

57

Legend: revoke accept(rvac), refuse(rf), allow(al), initial(in)

Figure 2.7: Revoke Accept

Revoke Accept Revoke an acceptance as illustrated in fig. 2.7 means that the initiator
is returning to a previous accept step. The initiator has already accepted the result but,
on second thoughts, he is not satisfied with the result and revokes the previous accepted
step.
This concludes the list of steps of the universal transaction pattern for DEMO 3. We
have left out the complete explanation of all steps and when and why you can use them.
That exercise is beyond the scope of this thesis and the reader is encouraged to do that
exercise in either [25] or in [9].

58

2.1.2 DEMO Concepts

DEMO has just a few basic concepts: Transaction Kinds (TKs) and Elementary Actor
Roles (EARs). We will refer to these concepts mostly by their name or abbreviation.
The TK is the abstraction of the universal transaction pattern and represents the com-
munication and production acts and facts. The EAR is the representation of the actor
roles in the a-world. Two aggregated versions of these two concepts are present in the
form of the Aggregate Transaction Kind (ATK) and the Composite Actor Role (CAR). In
both aggregated concepts, the underlying singular versions of the concept can be hidden.
This enclosure within the ATK and CAR is a viewpoint on an organisation part that does
not have to be revealed yet. This hiding of the organisation can be described from the
viewpoint of the c/p-world.
The earlier described steps of the universal transaction pattern map also to a concept of
DEMO. In this thesis, we will call them Transaction Process Step Kind (TPSK). These
are smaller process steps than a transaction in the c/p-world that we will be able to
model.
In the p-world, there are more concepts that need to be addressed. The Entity Type (ET)
with its Attribute Type (AT) are concepts that we use to model the information needs
in an organisation. The construction of these types fulfils most needs in information
modelling, and we will limit the DEMO overview to these concepts. A completer list of
DEMO concepts can be found in chapter 4.

2.1.3 DEMO Aspect Models

The Design and Engineering Methodology for Organisations (DEMO) [25] methodology
can produce a so-called essential model of an organisation that forms the integrated
whole of four aspect models: the Construction Model (CM), the Action Model (AM),
the Process Model (PM), and the Fact Model (FM). A combination of diagrams and
cross-model tables can express the whole DEMO model.

59

Figure 2.8: DEMO aspect models

The CM is the first and the most comprehensive model to produce when modelling an
organisation in DEMO, applying the Organisational Essence Revealing (OER) method.
This method is explained and enhanced in section 6.7. A CM is a model that represents
the construction of an organisation (or better: of a Scope of Interest). This model consists
of the identified transaction kinds and the actor roles that are either executor or initiator
of these transaction kinds. The resulting ‘network’ of transaction kinds and actor roles
is always a set of tree structures, which arise from the inherent property that every
transaction kind has exactly one elementary actor role as its executor (and vice versa),
and that every actor role may be the initiator of none, one or more transaction kinds.
A CM can be expressed in an Organisation Construction Diagram (OCD), a Transaction
Product Table (TPT), and a Bank Contents Table (BCT).
The OCD is a graphical representation of the identified TK, ATK, EAR, CAR within a
Scope of Interest (SoI), and the links between them which show the dependencies between
roles in execution and information. These links have three appearances, the initiator and
executor links, and actor roles may also connect to transaction kinds through information
links. The latter express that the specific actor role has (reading) access to the history of
all transactions of the transaction kind with which it connects. Therefore, one can also
interpret the transaction kind shape as a transaction bank. The high abstraction level
makes this OCD a compact diagram in relation to the implementation of the organisation.
The TPT shows the TK identification and description together with the product identi-
fication and description. This table is used to get insight into the products that are being
created in the organisation.
Finally, the BCT shows the contents of the ATK. This contains the identification and
name of the ATK and the ET and attribute types of those ETs that are present. This is
used to show the extend of (external) data.

60

Figure 2.9: Poligyn OCD modelled in the tool

Figure 2.10: Poligyn TPT modelled in the tool

We modelled the example case of [9, chapter 17], named Poligyn using the tool. In fig. 2.9
we see the four TK of the CM with its initiating and executing actor roles within the
modelled organisation. These TKs can also be shown in a table as the TPT in fig. 2.10.
One step further in the analysis, we get to the process dependencies depicted in fig. 2.11.
Finally, in fig. 2.12 the FM shows the internal references between ETs and the relations
between ET and TK.

The PM of a Scope of Interest bridges its CM and the coordination part of its
AM. To this end, it specifies how the transaction kinds in a tree are related to each
other. More precisely, it specifies which transaction steps in an enclosed transaction
kind are connected to which steps in the enclosing transaction kind, and specifies by

61

which kind of link (response-link or wait-link) they are connected. A PM is expressed
in a Process Structure Diagram (PSD) which shows the relations between the process
steps of interrelated transactions, and (optionally) in one or more Transaction Pattern
Diagrams (TPDs). These diagrams are ways to visualise the dependency of transactions
and transaction steps, respectively. Business rules are partially covered as well.

Figure 2.11: Poligyn PSD modelled in the tool

62

Figure 2.12: Poligyn OFD modelled in the tool

The FM of a Scope of Interest bridges its CM and the production part of its AM.
To this end, it specifies the various entity types, property types, and attribute types, as
well as their mutual relationships. The FM involves a single diagram kind, the Object
Fact Diagram (OFD), which shows ETs and Product Kinds (PKs), and the Information
Use Table (IUT). This model is often called the data model, although it shows much
more information.

The AM of a Scope of Interest comprises the guidelines that guide actors in doing
their work, i.e. performing their coordination acts and their production acts. Action
rules, which are actually (imperative) business rules, guide actors in responding to the
coordination events they have to deal with. A semi-structured English-like language
is used to express the action rules. Work instructions guide actors in performing the
production acts, i.e. in bringing about the products of transactions.
This last aspect model contains Action Rules Specification (ARS) and Work Instruction
Specification (WIS). Per non-trivial process step minimal one specification shows the in-
put and conditions to proceed in the transaction pattern or advance to other transactions.
This specification is used to model all details of the (to-be) organisation.
Different aspect models contain overlapping elements; therefore, the DEMO essential
model is the result of the combination of all aspect models.
The studied version of DEMO is called DEMO 3. It is published in [26] and in [1].
Examples in the context of this section are illustrated for diagrams in fig. 2.13 on page 64
and for tables in fig. 2.14 on page 65.

63

T
h

e

E
n

te
r
p

r
is

e

E
n

g
in

e
e
r
in

g

C
o
m

p
a

n
y

2

W
h

at
 is

 it
: D

ia
gr

am
s

O
b
je

ct
 F

a
ct

D
ia

g
ra

m

O
F
D

D
F
S

D
e
ri
v
e
d
 F

a
ct

S
p
e
ci

fi
ca

ti
o
n
s

P
ro

ce
ss

 S
tr

u
ct

u
re

D
ia

g
ra

m

P
S
D

T
P
D

T
ra

n
sa

ct
io

n
 P

a
tt

e
rn

D
ia

g
ra

m

 A
R
S

A
ct

io
n
 R

u
le

S
p
e
ci

fi
ca

ti
o
n
s

W
IS

W
o
rk

 I
n
st

ru
ct

io
n

S
p
e
ci

fi
ca

ti
o
n
s

C
S
D

O
F
D

P
S
D

T
P
D

A
R
S

W
IS

D
F
S

O
rg

a
n
is

a
ti
o
n

C
o
n
st

ru
ct

io
n

D
ia

g
ra

m

C
o
o
rd

in
a
ti
o
n

S
tr

u
ct

u
re

D

ia
g
ra

m

C
S
D

O
C
D

O
C
D

Figure 2.13: DEMO 3 and 4 diagram visualisations

64

T
h
e

E
n

te
r
p

r
is

e

E
n

g
in

e
e
r
in

g

C
o
m

p
a

n
y

2

W
h

at
 is

 it
: T

ab
le

s

2

C
U
T

C
re

a
te

 U
se

 T
a
b
le

T
P
T

Tr
a
n
sa

ct
o
r

P
ro

d
u
ct

 T
a
b
le

B
C
T

B
a
n
k
 C

o
n
te

n
ts

 T
a
b
le

A
D
T

A
u
th

o
ri
sa

ti
o
n

D
e
le

g
a
ti
o
n
 T

a
b
le

B
A
T

B
a
n
k
 A

cc
e
ss

 T
a
b
le

L
ib

ra
ry

:
B

a
n

k
 A

c
c
e

s
s
 T

a
b

le

B
a
n
k

A
ct

o
r

T
K
0
1

T
K
0
2

T
K
0
3

T
K
0
4

T
K
0
5

T
K
0
6

T
K
0
7

T
K
0
8

T
K
0
9

M
T
K
0
1

M
T
K
0
2

M
T
K
0
3

A
R
0
1

E
x

In
U

U
U

A
R
0
2

E
x

U

A
R
0
3

U
In

In
,
E
x

U
U

U

A
R
0
4

U
E
x

U
U

U
U

A
R
0
5

U
In

In
,
E
x

U
U

A
R
0
6

U
U

E
x

In
In

In
U

U
U

A
R
0
7

E
x

U

A
R
0
8

E
x

U

A
R
0
9

E
x

U

C
T
A
R
0
1

In
In

U

C
T
A
R
0
2

In
U

C
U
TB
A
T

T
P
T

B
C
T

A
D
T

Figure 2.14: DEMO 3 and 4 table visualisations

65

2.2 Perspectives on DEMO Models

We need to distinguish between three perspectives on the models used when applying
DEMO. These are illustrated in fig. 2.15.
The first perspective is the methodology perspective. Even though it provides a thor-
ough theoretical basis, the DEMO methodology book [9] was primarily written to teach
learners (students and practitioners) to create models in accordance with the DEMO way
of thinking, and draw (human to human) communicable models to reason about the or-
ganisation. As such, the book puts the priority on “doing”, when introducing the different
model kinds. There was no need for a strict metamodel. Furthermore, the formalisation(s)
provided in the book aim to support didactic goals rather than the development of auto-
mated modelling tools. As such, it was never meant to provide a detailed formalisation
and metamodels, that would enable the development of, and automated support for, the
methodology. As discussed in [81], different metamodelling and formalisation goals will
and should also result in formalisations with different level(s) of detail and specificity.
When using DEMOSL as base for tool development, then it should indeed provide a more
complete and detailed formalisation and metamodel; taking us to the language perspective.
This is the perspective where it should be possible to (automatically) reason about models
and metamodels, to e.g. support model verification. This requires the formalisation of
the language definition in a format that lends itself better for automatic processing [81].
It also requires the completion and operationalisation of the ontological metamodels as
included in the methodology perspective; in particular the rules and constraints to be
applied to the actual models.
The last model exchange perspective concerns the exchange and storage of model informa-
tion. Jointly reasoning about/with models is only possible when all parties involved have
(basically) the same understanding of the model, which requires a joint understanding of
the used notation.
The notation used must also be the same across different modelling tools. Therefore, the
meaning of the elements and attributes must be well defined. Moreover, the notation
must enable the reasoning within the exchange model to be able to check consistency of
this model. In addition, the internal consistency needs to be correct and needs to be
checked before the model can be converted back to the language perspective.
While a good theory should help professionals to do their job, more professionals are
educated using automation as their main tooling. Where pencils were used, tablets have
taken their place, and people see automation as their starting point. Tooling fulfils a
lever function in broadening the use of the methodology. As a result, to enable tool
development, a more complete and detailed formalisation and metamodel were needed.

66

Model
exchange

perspective
Language

perspective
Methodology
perspective

MU
theory

Operationalization

OER

Figure 2.15: Perspectives on DEMO Modelling

2.3 MU Theory

The Model Universe (MU)-theory provides the theoretical foundation of the notions of
model, modelling, and modelling language as used in DEMO. The DEMO methodology
was published with its metamodels in various versions [25, 26, 1, 27, 82, 83] which describe
how to contain the models for the CM, PM, FM, and AM. The metamodels, referred to
as DEMOSL, describe the meta-level of the respective models but are not entirely aligned.
The most recent version of the MU-theory has been presented in [9].
Given the aim of this thesis to evolve the accompanying DEMOSL, the MU-theory is
considered as a fixed and pre-defined part of the knowledge base (in design science terms).
In this section, we highlight some of the key elements of the MU-theory that are relevant
to the understanding and positioning of the thesis.
The MU-theory theory adopts Apostel’s [84] definition of model: “Any subject using a
system A to obtain knowledge of a system B, is using A as a model of B.” This definition
conveys the basic understanding of the notion of model as being a role [9].
A key part of the MU-theory is the General Conceptual Modelling Framework (GCMF),
as depicted in fig. 2.16. The MU-theory uses the term complex to refer to systems in the
general sense, as used in Apostel’s [84] definition of model. However, since DEMO uses
its own (more specific) definition of system, the term complex is preferred when speaking
about modelling in general (as is the case for the MU-theory).

67

general
(conceptual)

modelling
language

domain
(conceptual)

modelling
language

SYMBOLIC
FORMALISM

META
SCHEMA

SYMBOLIC
FORMALISM

CONCEPTUAL
SCHEMA

CONCEPTUAL
COMPLEX

SYMBOLIC
COMPLEX

meta level
(meta meta model)

schema level
(meta model)

instance level
(model)

is

 a
 s

em
an

ti
c

eq
u

iv
al

en
t

o
f

is

 a
 s

em
an

ti
c

eq
u

iv
al

e
n

t
o

f

is
 a

 s
yn

ta
ct

ic
eq

u
iv

al
en

t
o

f
→

is
 a

 s
yn

ta
ct

ic
eq

u
iv

al
e

n
t

o
f
→

is
 a

 r
ep

re
se

n
ta

ti
o

n
 in

 →
is

 a
 r

ep
re

se
n

ta
ti

o
n

 in
 →

is a syntax of →

 is a semantics of

 is a semantics of

is a syntax of →

is an expression of →

 is a interpretation of is a concretisation of

is an conceptualisation of → CONCRETE
COMPLEX

is
 a

n
 in

st
an

ti
at

io
n

 o
f
→

is
 a

n
 in

st
an

ti
at

io
n

 o
f
→

is an instantiation of →

is
 a

 t
ra

n
sf

o
r-

m
at

io
n

o
f
→

is

 a
n

im

it
at

io
n

 o
f

Figure 2.16: The General Conceptual Modelling Framework, adopted from [9]

The basic thinking underlying the GCMF is based on the semiotic triangle by Ogden and
Richards [28]. In line with this, the MU-theory refers to the phenomena we observe and
interact with in reality as concrete complexes, while the conception of these complexes an
actor harbours in their mind is referred to as the conceptual complexes, and a resulting
symbolic representation (such as a diagram, a narrative description, or an XML document)
as symbolic complexes.
When combining this with Apostel’s definition of a model, then one can state that when
such a complex A is used to obtain knowledge of a complex B, then A is said to be a
model of B. As a corollary to this, one can (using the terminology from the MU-theory)
distinguish between concrete models, conceptual models and symbolic models.
The MU-theory states that the creation of a conceptual complex needs to conform to
a conceptual schema. It is furthermore assumed that a conceptual complex can only be
created in the mind of some actor observing a domain, if they already have a conceptual
schema in terms of which they can observe the world. This is indicated by the red curved
arrow in fig. 2.16. As such, a conceptual schema limits the observable world (of an actor).
The MU-theory also states that a modelling language essentially involves a combination of
a conceptual schema and a corresponding symbolic formalism that provides the symbolic
representation of the conceptual schema.

68

The DEMOSL is targeted at the schema level of fig. 2.16. In other words, it should provide
a symbolic formalism corresponding to the conceptual schema(s) used by the different
model (and diagram) kinds within DEMO. As illustrated in fig. 2.16, the MU-theory also
identifies a meta level involving a meta schema and a corresponding symbolic formalism.
This is where, in our case, we will find UML class diagrams and XML Document Type
Definitions (DTDs) to define the DEMOSL.
The MU-theory also provides global guidelines on how to create the various levels of
complexes and schemas. Finding a lower level from a higher level can be accomplished by
deduction, which also provides a good method for the verification of models. Induction
can be used to derive the meta level from examples. In doing the latter, it can be helpful to
transform graphical languages into structured textual languages, called verbalisation. We
used both deduction and induction methods to create metamodels and DEMO information
models. We are using the conceptual schema (i.e model) of the organisation and we will
express it in symbolic formalism (e.g. diagrams, tables). The conceptual model will be
formulated using a meta schema (i.e. metamodel).

2.4 Repository

A repository, in the context of modelling, is a storage where all symbolic complexes of
the defined metamodel can be stored. To be able to create a single repository that stores
the whole model, it is indispensable that the aspect models can be merged uniformly
without compromising the methodology. Therefore, in this thesis, the separate aspect
metamodels will be combined to create an integral repository structure that at minimum
supports all aspect models. The integral metamodel is the base for implementing a tool
(chapter 5) that supports the graphical and textual representation of DEMO models. This
repository can be used to create the model in organisations (chapter 6), automation and
e.g. transform the PM to a Petri-net [85, Ch4] representation for validation of the PM,
and other transformations that are possible due to this repository.

2.5 The Notion of Metamodel

To be able to validate the metamodel of DEMO, we need a definition describing the
requirements of the metamodel2. We will use the following definition of a metamodel [29]:
“Metamodels define sets of valid models, facilitating their transformation, serialisation,
and exchange.”.
Analysing this definition, we have to define which models are valid. The metamodel of
these valid models needs to be sufficiently complete to describe all sets of models that are
allowed. Moreover, the metamodel needs to be restrictive enough to reject models that
are not valid.
According to this definition, metamodels should facilitate the exchange of the models.
Following this part of the definition means that all aspects of the model that are drawn,

2Though a broader discussion of the notion of metamodel is possible, it is of no interest of this thesis
and likely requires the same amount of pages to discuss this properly.

69

noted, related, or specified need to be described in such a way that the exact representation
can be reproduced with the specification.
The serialisation of a model allows for the exchange of model information with possibly a
different syntax than the model is represented itself. This is needed to store and retrieve
models and business rules to and from repositories. As mentioned in section 1.4.2 the
metamodel also needs to facilitate the model exchange of a visual representation of the
model.
Transformation of the models is not included in DEMO’s base but is part of the current re-
search project. Therefore, we must be able to specify the DEMO models in the metamodel
well enough to enable the partial transformation of the model (e.g. from ontological to
implementation level).
This usage of metamodels for prescriptive and descriptive modelling [30, Section 2.2]
makes the resulting models stable. The models will be semantically and syntactically
sound, making the perception of the model predictable.

2.6 The Notion of Partial Metamodel

Due to the complexity of the metamodel that we present we decided to create partial
metamodels. Partials metamodels describe the metamodel from a specific viewpoint. In
other words, we leave out a large portion of the complexity and focus on a single aspect
of the metamodel.
In the thesis we distinguish five partial metamodels:

� ontological-metamodel

The high level ontological metamodel is the metamodel that is closest to the
metamodel that lists all ontological principles of DEMO models [25]. For example,
ontologically, the CAR cannot be an initiator of a transaction kind because an un-
derlying elementary actor role must be the initiator. Therefore, this property type
does not exist in the high level ontological metamodel.

In contrast with the high level ontological metamodel, the ontological metamodel
contains all implementation attribute types and property types for the DEMO
metamodel. The ontological metamodel also includes property types between the
concepts.

� verification-metamodel

The logical part of the metamodel is about internal verification of the models rep-
resented. These verification rules of the verification-metamodel will be addressed as
a separate metamodel.

� visualisation-metamodel

The visualisation of a model seems trivial. Nevertheless, we decided to build a
visualisation-metamodel concerning all visualisations of complexes.

70

� exchange-metamodel

The exchange-metamodel is build up of two major parts:

– data-exchange-metamodel

The concept of a data-exchange-metamodel is intertwined in the concept of the
ontological metamodel. We describe the data-exchange-metamodel in terms
that a computer can understand. We choose to represent the data-exchange-
metamodel in XML Schema Definition (XSD), which is a commonly used tech-
nique.

– visualisation-exchange-metamodel

All element that have been described in the data-exchange-metamodel have a
visualisation element in the exchange metamodel. The structure of the visu-
alisation elements is similar to the data-exchange-metamodel structure. All
visualisation elements reference the data elements in the same model. The
visualisation elements add the visualisation attributes for the specific diagram
to that information (e.g. size, location, waypoints).

2.7 Fact Diagrams

In order to understand the metamodels presented in this thesis, we will explain a few
concepts which are used in de graphical notation of the metamodels. First, an entity type
is a representation of a thing with distinct and independent existence. Those things can
be tangible (e.g. car) or intangible (e.g. transaction). Next, a property type is a binary
fact type that maps the domain entity type to the range entity type. In writing, one
often calls the property type ‘a relation’. Last, an attribute type is a quality or feature
regarded as an inherent part of a thing. Using these types, one can describe things and
their relation. To create new things, one needs to add the operations of specialisation,
generalisation, and aggregation. Specialisation is the restriction of an entity type to a
specific property of the thing described (e.g. an electric car). Generalisation is combining
concepts to form a new concept (e.g. car and boat form transportation). Aggregation
is the clustering of concepts as a Cartesian product (e.g. car × supplier). Using these
concepts and operations, one can build metamodels that we use in this thesis.

2.8 The Notion of Enterprise-grade

The term “enterprise-grade” does not originate from science3, but is a term commonly
used in practice. As reported by practitioners, the term is used to differentiate consumer
products from enterprise products [31]. In [32], Gartner defines it as: “Enterprise-grade
describes products that integrate into an infrastructure with a minimum of complexity

3Even though we can not claim to have conducted an in-depth literature survey on the term
“enterprise-grade”, the papers we did find (through a basic google scholar search) left the definition
implicit.

71

and offer transparent proxy support.” In line with this, enterprise-grade (in the context of
software applications in general) is associated by practitioners [31, 33, 34] to characteristics
such as productivity, security (including e.g. encryption of data, data security, granular
levels of user access, protection of data, compliance), integration, administration, support,
and scalability.
For a modelling tool to be enterprise-grade, it also implies that there must be a solid and
secure repository (to store the models). Essential qualities for such repositories include
extensibility, maintainability, interoperability, and portability [35]. Since enterprise engin-
eering and architecting efforts typically involve many different aspects, as well as many
different stakeholders [36, 37], it is important for modelling tools to provide different
visualisations. Even more, these visualisations should be in a format that can be easily
integrated into standard presentation and text editing software.
Finally, as often also included in evaluations by e.g. Gartner [32], an enterprise-grade tool
needs to be backed by a company or organisation that can provide reliable after-sales
service and maintenance. This also presupposes a committed and serious tool vendor,
while the tool needs to be built using mature technologies (which certainly does not
automatically imply proprietary technologies).
In conclusion, “enterprise-grade” primarily concerns non-functional quality criteria of both
the tool, and the technology vendor providing the tool and/or associated services.

2.9 The Notion of Tool

The Cambridge dictionary defines a tool as “a program or feature of a program that helps
you do particular things on a computer”. This is a very broad definition and we need to
narrow it down. For modelling one needs to:

� create elements and relationships between the elements
� (re)use elements and relationships for visualisation in some sort
� store the model and retrieve it later
� delete elements and relationships

In this thesis we define a automated modelling tool as a program that features the mod-
elling activities like create, (re)use, delete, visualise, exchange, and store for elements and
relationships between those elements.

72

Chapter 3

The DEMO Specification Language

Part of this chapter was previously published in a paper for the Enterprise Engineering
Working Conference (EEWC) 2018 [2].

3.1 Modelling (in) DEMOSL

The DEMOSL is the specification language of (1) how DEMO models should be con-
structed, (2) what rules they must comply with, and (3) what information they should
contain, and (4) how the model can be represented. Every DEMO model should comply
with the DEMOSL and the DEMOSL should be able to define all valid DEMO models.
Before building the whole metamodel of DEMOSL in Sparx Enterprise Architect (SEA)
(section 5.2), we analysed consistency of the current metamodel in our research. Gouveia
and Aveiro [38] verified the FM and suggested to make changes in the value type, but
those did not affect the ontological-metamodel. Moreover, published literature mentions
no changes in the metamodel. Furthermore, literature research reveals no documented,
complete implementation of DEMOSL. Therefore, we conjecture that the metamodels
have never been verified for automation. In the next paragraphs, we will analyse the
DEMOSL metamodels and suggest changes where applicable.

73

Figure 3.1: Diagram of the metamodel of the CM

The diagram of the ontological-metamodel of the Construction Model (CM), as shown in
fig. 3.1, shows six entity types and represents the meta-level to combine actor roles and
transaction kinds. The TK entity type models the transaction kinds, and ATK is the ag-
gregation of transaction kinds. By the ‘is part of’ property type, a single component can
visually replace the transactions in that scope. All created facts resulting from all trans-
actions are contained within the Fact Kind and Independent P-Fact Kind. Interstriction
between transaction kinds and actor roles are equivalent to the ‘may inspect the contents
of bank’ property type. The entity types EAR and CAR contain the actor roles of the
model. A SoI hierarchy of actor roles is available through the ‘is an actor role within’
property type. The elementary and the composite actor roles both have the initiator and
executor roles modelled as the property types indicate.

74

Figure 3.2: Process Metamodel

The PM metamodel as illustrated in fig. 3.2 shows three entity types. The process-step-
kind-entity-types aggregate the transaction kind with the process step using a Cartesian
product. This aggregation allows for modelling the relationship between a process step
kind of one transaction kind and a request step in another transaction kind using the ‘is
initiated from’ property type. Also, the wait conditions between two process step kinds
are equivalent to the ‘is a wait condition for’ property type. The transaction kind entity
type is the same as the transaction kind entity type in the CM metamodel.

Figure 3.3: Action Metamodel

The AM metamodel as illustrated in fig. 3.3 has a single entity type representing action
rule information of a specific process step. In the formal specifications, the AM is specified
in Extended Backus - Naur Form (EBNF) [40]. The EBNF specification mentions three
main parts. The first part specifies the preconditions for an execution of the action. The
second part specifies the evaluation of the conditions. The last part specifies the executed
actions in case of a valid or invalid condition. The relations between the AM and the FM
appear to be implicit.

75

Figure 3.4: Fact Metamodel

The FM metamodel as illustrated in fig. 3.4 contains eight entity types. This ontological-
metamodel (1) allows the creation of simple entity types and specialised, generalised or
aggregated entity types. Entities can contain two types of attributes (2): value type
and properties related to other entity types. An event type property (3) stores occurring
events, similar to the property type, within an entity type. The combination of the event
type, entity type, property type, value type, and attribute type entity types results to the
generalisation fact type (4) which can start or end to exist (wherein DEMO facts only
start to exist).
With the partial DEMOSL ontological-metamodels in mind, we tried to project existing
DEMO models onto the ontological-metamodel and found some practical imperfections.

3.2 Observations

With the partial DEMOSL-metamodels in mind, we tried to project the existing DEMO
models onto the metamodel using a newly developed automation tool. In doing so, we
discovered some practical imperfections on which we elaborate in the next sections. Also,
during the project of building an automation tool to support DEMO modelling, the
analysis of the ontological-metamodel showed some inconsistencies. We found that not
all partial metamodels allow to produce correct DEMO models. Moreover, not all parts of
the DEMOSL metamodel were connected. This may have consequences for the usability
of DEMO models as a whole. Theoretical benefits might not be usable when one reduces
the DEMO model to its aspect models. DEMO claims to be a methodology that can reveal
the essence of an organisation by combining the four partial analyses. A search within

76

the existing literature did not yield any research or scientific findings on this subject.

3.3 DEMOSL Inconsistencies and Omissions

The consistency of the current DEMOSL metamodel of DEMO was analysed with auto-
mated tools. Earlier, Gouveia and Aveiro [38] verified the FM and suggested to make
changes in the value type but those did not affect the metamodel. Kervel [39] has created
his own model to specifically describe the transaction pattern of DEMO models. Other
literature research did not yield any results on suggested or applicable changes to the
metamodel. Furthermore, literature research did not reveal any documented or published
complete implementation of the DEMOSL metamodel. The DEMO community, which
consist of academic and practical specialists, also does not have any research available on
this subject.
In the next paragraphs, we will further elaborate on the analysis of the DEMOSL
metamodels. We used the published DEMOSL versions 3.6 [27] and 3.7 [1] for the analysis
of the metamodel. DEMOSL 3.7 has been published and some results of this research
project are inclused already..

3.3.1 DEMOSL Metamodel

We can make three observations due to the exchange-metamodel requirement that arises
from section 2.5. Firstly, no part of the DEMOSL metamodel is currently capable of
capturing all necessary information to exchange names, formulations, or visual information
from diagrams, tables, or specifications. In the past, no one had the intended use of
DEMOSL for automated tools and, therefore, did not request to describe these aspects
of the metamodel. The current version of DEMOSL is only describing the high-level
ontological structure. Secondly, although ontology perspective considers the name of an
object as the identity of that object, the ontological-metamodel must include the name
to be able to exchange this identity from a modelling perspective. Finally, concerning the
diagrams and tables used in DEMO, no visualisation-metamodel is given with DEMOSL,
though some visualisation examples are present and imply a visualisation-metamodel.
This definition is needed to be able to exchange the exact visual information.

77

3.3.2 Construction Metamodel

Figure 3.5: Metamodel 3.6 of the CM [27, sl.27]

Figure 3.6: Metamodel 3.7 of the CM [1, sl.31]

The metamodel of the CM 3.6 (fig. 3.5) [27, sl.27] shows five entity types and represents
the meta-level to combine actor roles and transaction kinds. In addition, the metamodel
of the CM 3.7 (fig. 3.6) [1, sl.31] shows six entity types. The observed change in the
metamodel is a partial result of the research we conducted. We will further elaborate on
the suggested improvements and will highlight the remaining issues.
The TK entity type represents Transaction Kinds (TKs). ATK is the aggregation of
multiple TKs. This concept comprises the aggregation of all information of individual
TKs. The ‘TK is part of ATK’ property type, fig. 3.6(9), therefore, allows for replacing
the transactions within a selected set of TKs by a single component, an ATK. In this

78

way, the ATK can visualise the involved TKs in an aggregated form. ATKs that are out
of the SoI have no TK to refer to. The ontological-metamodel states that this reference is
mandatory (1..*), whereas an example [26, p.89] shows several unreferenced instances of
ATKs. Because DEMOSL does not specify another representation to register this property
type it is either an omission in the diagram or an inconsistency within DEMOSL.
The Fact Kind (FK) entity type in DEMOSL 3.6 represents both the coordination fact
and production fact of a TK. This notion is not consistent with the FM; therefore, it
has been changed in DEMOSL 3.7. The FK and Independent P-Fact Kind (IFK) now
contain all transactions created facts.
The ‘EAR has access to the bank of TK’ that we have rephrased to ‘may inspect the
contents of bank’ property type, as shown in fig. 3.6(5), models the interstriction between
transaction kinds and actor roles. Solely inspection of the ATKs cannot be represented
in the ontological-metamodel.

Figure 3.7: RAC Model from TEoO [26, p.72]

As can be seen in the diagram shown in fig. 3.7, a grey boundary is displayed. This
boundary has been described in DEMOSL 3.6 [27, sl.7] and 3.7 [1, sl.7] as the SoI. The
DEMO methodology states that the TK can be on the boundary of the SoI to represent a
TK communication between the inside and outside of the border of the SoI. Unfortunately,
the DEMOSL 3.7 ontological-metamodel cannot relate any component as being inside or
outside any SoI, nor can it model the name of the SoI.
In the entity types EAR and CAR the actor roles of the model are stored.

79

Figure 3.8: Transaction Kind and CAR

The initiator and executor roles are described separately as property types for the ele-
mentary and the composite actor roles. This set of property types has evolved from the
DEMOSL 3.6 metamodel where ‘EAR is hidden in CAR’ was not sufficient for modelling
various EAR roles within a CAR. A collection of actor roles is available through the
property type ‘EAR is an actor role within CAR’, fig. 3.6(6). This property type requires
that for every CAR at least one EAR is present. When modelling an actor role outside
the SoI, this property type’s cardinality cannot hold because the associated EAR does
not belong to the model.
Although the CAR includes TKs according to [1, sl.31‘note 4’], the property type ‘TK is
contained in CAR’ of version 3.6 has been omitted. Therefore, no explicit property type
from the transaction to a CAR exists. Moreover, [1, sl.31‘note 4’] states the inclusion of
the TKs between the EARs within the CAR. The situation of CAR2 in fig. 3.9 and CA1
in fig. 3.8 shows that the metamodel is not able to handle this situation. In the latter,
A0 would initiate CA1. Without this ‘TK is contained in CAR’ ontological-metamodel
property type, it is not clear whether the transaction kind T2 in fig. 3.8 is part of CAR.

Figure 3.9: CAR example [1, sl.10]

80

In the DEMO methodology, the first step is to create a CM and to create a CAR to
relate it to the border transactions. The metamodel cannot capture these CARs with
their border transactions.
The next step in the DEMO methodology is to reveal the inner actor roles within the
CAR. When these actor roles are too complex to be revealed at once, one uses new CARs
where more actor roles can be revealed. Neither the ontological-metamodel of DEMOSL
3.6 nor 3.7 can model the hierarchical CAR. When an EAR is part of multiple CARs, the
CARs might relate in some way. This property type is also not present in the metamodel.
In the metamodel of 3.7, an example as shown in fig. 3.9 of multiple CARs within the same
CM has been given. CAR1, as well as CAR3, is contained within CAR21 but whether
this property type is relevant cannot be modelled.
A summary of the issues found in the CM:
CM.a inconsistent property type to the FM(but this has been fixed in DEMOSL 3.7);
CM.b mandatory TK for ATKs;
CM.c mandatory EAR for CARs;
CM.d missing inspection property type to separate ATKs;
CM.e missing scope of interest;
CM.f missing CAR to TK property type;
CM.g missing CAR hierarchy;
CM.h missing property type TK in CAR;
CM.i missing interstriction between ATK and CAR or SoI.

3.3.3 Process Metamodel

Figure 3.10: PM Metamodel 3.6 [27, sl.28]

1The initiator and executor roles in the example notes are incorrect

81

Figure 3.11: PM Metamodel 3.7 [1, sl.32]

The PM ontological-metamodel of DEMOSL 3.6 (fig. 3.10) shows three entity types. The
PM ontological-metamodel of DEMOSL 3.7 (fig. 3.11) shows four entity types. The entity
type TPSK is partially renamed in version 3.7 to Transaction Kind Step Kind (TKSK),
but we will still refer to this entity type with TPSK. The Transaction Kind (TK) entity
type represents the same entity type as shown in the CM (fig. 3.6), and creates the
connection between the CM and the PM.
The Process Step Kind (PSK) entity types in the metamodel of DEMOSL 3.6 extend
the TK with the process steps using a Cartesian product. This extension allows for
modelling the relationship between a TPSK of one TK and a PSK in another TK using
the ‘is initiated from’ property type. Moreover, the ‘is a wait condition for’ property type
represent wait conditions between two process steps.
The property type ‘TK is initiated from TPSK’ in the ontological-metamodel of DEMOSL
3.6 did not allow a TPSK to invoke a Revoke Step Kind (RSK) in another TK. Therefore,
in metamodel of DEMOSL 3.7, the property type is changed to a self-reference: ‘there is
a response link from TPSK to TPSK’. This property type does not sufficiently restrict the
model and needs [1, sl.32‘note 2’] that the transaction pattern will limit the possibilities
of linking the appropriate steps.
The transaction pattern itself has been extended with a reversion link to support the step
kinds from Revoke Pattern Step Kind (RPSK) patterns to the General Step Kinds (GSK).
The reversion link is part of the transaction pattern. The metamodel should include all
steps of the internal transaction pattern. However, the ontological-metamodel does not
allow for modelling the complete transaction pattern.

82

Figure 3.12: Process Model Legend [1, sl.18]

In the PSD visualisation (fig. 3.12), swim lanes are introduced in the diagrams. These
swim lanes are not present in the ontological-metamodel.
In summary, the issues found in the PM metamodel are:
PM.a links between TPSK instances are insufficient (but these are fixed in 3.7);
PM.b only partially modelling of the complete transaction pattern is possible;
PM.c swim lanes are not present in the ontological-metamodel.

3.3.4 Fact Metamodel

Figure 3.13: Fact Model 3.7 Metamodel [1, sl.34]

The FM diagram and the ontological-metamodel are expressed in the same visualisation.
Therefore, the metamodel of the FM is illustrated in bold and we have used the italic

83

font for the FM diagram itself. Furthermore, the FM metamodel 3.7 as shown in fig. 3.13
contains eight entity types. The difference between the DEMOSL 3.6 and the 3.7 version
is the addition of the ‘P-’ naming prefix (‘P’ stands for Production-world). We omit this
P-naming prefix in this section for short writing where no ambiguity can be found.
We will briefly explain the FM metamodel and provide comment on the things we see in
this diagram. This FM metamodel allows for simple entity types but also for specialised,
generalised or aggregated entity types. Entity types can contain two types of property
types: value types (i.e. attribute) and property types (i.e. relation).
An entity type can be modelled using the concept entity type. The name of a specific
entity type [1, sl.22] has not been added to the FM metamodel.
The property type, or relationship, between entity types is expressed as a property type
that consist of a domain entity type and a range entity type. The name of a property
type [1, sl.22] has not been added to the FM metamodel.
The attribute type is a specialisation of a property type and acts the same way as
a property type. [1, sl.34-‘footnote 2’] states that the property types ‘adomain’ and
‘arange’ are also specialisations. The name, dimension, and unit of an attribute type [1,
sl.22] has not been added to the FM metamodel.
Every property type has a minimum and maximum cardinality for the domain and
range.
The event type entity type matches the IFK entity type of the CM. Therefore, it adds
two property types to the creation of a fact kind in the CM: precedes and precludes. The
precedence law [1, sl.26] states that two fact kinds as have an order in the time line. The
second fact kind can only occur when the first one has occurred. The preclusion law
states that the two fact kinds can only occur both if the first fact kind has not occurred
before the other. The above mentioned precedence law, as well as the preclusion law, do
affect the CM and the PM. Neither the metamodel nor the diagrams of the CM or the
PM mention this. The property type event time on the event type entity type represents
the moment in time line the event occurred. This event time duplicates the ‘has started
to exist’ event type.
The ‘concerns’ property type does link the event type to the base entity type in such
a way that every transaction kind that creates an independent fact kind also needs to
have a concerning entity type.
This notion of concerns to a base entity type means that an event type can never
concern a constructed entity type. Therefore, transaction kinds cannot be a concern
to specialisations of entity types. In the example RAC [26, p.75] is shown that the ‘RENT-
PAID RENTAL’ is a specialisation of ‘RENTAL’ while ‘RENT-PAID RENTAL’ is the
concern of ‘P2 the rent of Rental is paid’.
The constructed entity type deals with the specialisation of entity types and the
generalisation and aggregation of entity typesets. The distinction between entity type
and entity typeset connects together the entity types used for the set operation. [1, sl.34-
‘footnote 3’] does nonvisually connect the entity typeset to the entity type. We only
find a typo ‘1..0’ in the property type of the constructed entity type in the diagram.
The fact type is a generalisation of an entity type which can start or end to exist. To
be able to model the existence of a fact, we will need the time it came info existence and

84

the time its existence ended. Occurring production events will be stored as an event
type, similar to the property type, and related to an entity type.
The exclusion rule on a fact type [1, sl.25] can be used to make two disjoint collections
of entity types, property types, or even event types.
In summary the issues we found in the FM metamodel are:
FM.a name on entity type is missing;
FM.b name on property type is missing;
FM.c name, dimension and unit on attribute type are missing;
FM.d CM and PM lack precedence and preclusion laws;
FM.e specialisations cannot be concerned with event type;
FM.f cardinality on entity typeset is incorrect;
FM.g no time in start and end events.

3.3.5 Action Metamodel

Figure 3.14: Action Metamodel 3.7 [1, sl.33]

The AM metamodel as illustrated in fig. 3.14 [1, sl.33] has a single entity type representing
action rule information of a specific PSK with a reference to the related TPSK. In the
formal DEMOSL specifications, the AM is specified in EBNF [40]. The specification
mentions three main parts: The first part specifies the preconditions to execute an action.
The second part specifies the evaluated conditions of the action. The last part specifies
the executed actions in case of a valid or invalid condition. The syntax of the property
types to the FM is not fully specified. In the AM it is not clear whether the relationship
between the product kind and entity type is about reading, writing, or creating a FK.
The information in the AM is not sufficiently detailed to verify a model. We can specify
the verbalisation used in the Action Rules Specification (ARS) as property types.
We analysed the ARS with ANother Tool for Language Recognition (ANTLR) to verify
the completeness of the specifications of action rules. Although ANTLR does have a
slightly different syntax on EBNF, we translated all rules which need to be verified.

85

Figure 3.15: (Partial) Action Rule Specification

The result from our translation is that the following specifications were missing:
� property kind name;
� object variable;
� dimension;
� perfect tense sentence;
� product object reference.

The above mentioned specifications need to be defined, or their reference needs to be
altered, in order to be able to use the ARS. Furthermore, we found that some definitions of
variables were not distinct enough to be parsed by the ANTLR specifications. This missing
distinction could mean that the specification is ambiguous in the variable definition. The
attribute variable, abstract variable and product variable form connections to the fact
model. These connections should be present in the metamodel as illustrated in fig. 3.13.
In summary, the issues found in the AM metamodel are:
AM.a specifications of action rules need additions and elaborations;
AM.b naming of attribute, abstract and product variable needs to be added.

3.3.6 Visualisation

Since the DEMOSL [1] primarily focuses on consistency and completeness of DEMO
models from a “content” perspective. It is about educational examples in the most likely
situations. DEMOSL does not include any specifics about the actual representation of
these models in terms of diagrams, tables and other possible visualisations. As such,
the DEMOSL does not provide guidelines regarding the concrete syntax of models in

86

terms of e.g. shapes and icons to be used. When examining a corpus of models produced
across different cases, we found various variations in drawings of elements that each could
be interpreted as the convention of those elements. In moving towards (standardised)
tool support, this had to be remedied in terms of an explicit metamodel of the allowed
visualisations.

Figure 3.16: PSD specification example

As an example, consider the diagram provided in fig. 7.3. In an OCD, the shape is
normally drawn as a circle enclosing a diamond and this circle is stretched in the PSD
with the diamond displayed at a seemingly random position within this “stretched circle”.
In fig. 7.3, the name of the transaction appears below or above or at the side-top of
the transaction fig. 7.3, the diamond is at a certain percentage from the left side, the
stretching is a random length, while the swim lane usage is not consistent (i.e. 07 has the
same initiator and executor but is visualised on top of two swim lanes).
Furthermore, the examples of the same case are different between different DEMO versions
without explaining why this is the case, making it impossible to give guidance to readers
that were trained in a different version to interpret the visualisation, and also making it
impossible for a tool to comply to the specifications.

3.3.7 Summary

When we summarise our findings in the DEMOSL we will get a list of inconsistencies
and omissions that need to be solved in order to support automated modelling in DEMO.
In the next chapters we will make enhancements to the DEMOSL for this purpose and
implement a automation tool which contains the metamodel and will support automated
modelling in DEMO.

87

Chapter 4

The DEMO Specification Language
Proposal

Parts of this chapter have been previously published in the paper for the OTM/FBM
2018 conference [3].
Originally, the DEMO Specification Language (DEMOSL) was designed to better un-
derstand the concepts that need to be included in DEMO models. However, for the
development of an automated tool support for DEMO, more details and specificity of
implementation are needed than what is included in the original DEMOSL. These details
include the graphical layout of diagrams, exchange of models between tool environments,
as well as the specificity of the actual models. As such, the goal is to create an improved
version of the existing DEMOSL that is complete enough to automatically verify DEMO
modelling rules and restrictions using automated tools. Though a aim for completeness
would be ideal, it is not feasible within this research.
The resulting specification of DEMO is divided into four kinds of models (i.e. ontological,
visualisation, exchange, and visualisation exchange), and four associated metamodels.
These four model kinds need to comply with the requirements as stated in [6].
This chapter has been called a proposal and part of the findings from our research as
described in this chapter is meant to be incorporated in a successor of the DEMOSL
version 3.7. In this chapter we will explain some models and metamodels in the context
of DEMOSL. We have created fig. 4.3 to clarify the relationships and transitions between
these metamodels and models. To make fig. 4.3 a bit more comprehensive and readable we
have built-up the figure in three layers. The bottom layer is the MU-theory, as explained in
section 2.3. The layer on top of the MU-theory is the exchange layer as shown in fig. 4.1.
This layer is modelled conform to the MU-theory and is dedicated to the ontological-
(meta)model and the exchange-(meta)model. The top layer is the visualisation layer as
shown in fig. 4.2. These two layers on top of the MU-theory are related in a presenting
and referencing relationship.
These metamodels as shown in fig. 4.3 add information, structure, and completeness to
the existing version of DEMOSL. Our research concluded that without implementation
of these improvements the automatic verification and exchange of DEMO models using
automated tooling is not possible. Figure 4.3 shows the landscape of metamodels that

89

DEMO
Exchange

model

Ontological
model

Ontological
metamodel

Ontological
model

Data
Exchange

metamodel

XSD /
Ontological
metamodel

GOSL /
Ontological
metamodel

au

to
m

at
in

g

 translating

co

n
fo

rm
in

g

au
to

m
at

in
g

co

n
fo

rm
in

g

 is a semantics of

is a syntax of →

Figure 4.1: the exchange subset of the metamodel

together have the capability of modelling organisations using DEMO. The landscape is
visualised as a three dimensional framework, projected on top of the framework from the
MU-theory as described insection 2.3.
The two levels that have been projected on top of the framework from the MU-theory
correspond to the distinction between language and visualisation perspectives as discussed
in section 2.2.
The language perspective part is implemented in terms of automation software. This is
needed in order to make it possible to reason about (1) the (ontological) model itself, (2)
the way it may be exchanged, as well as (3) how these are visualised.
The visualisation perspective is concerned with the way how an actual DEMO model
has to be visualised in terms of diagrams. This leads to a visualisation model conform
to a visualisation metamodel. A visualisation model involves a set of visualisation at-
tributes (position, size, colours, etc) on top of an (visualised part of) ontological model.
The visualisation metamodel describes these attributes and contains the scripting and
data structure of the diagrams. Restrictions on the allowed elements, attributes, and
connections in a diagram are also formalised in the visualisation metamodel.
We have made improvements to the metamodel of DEMOSL 3.7 [1] according to the
findings as described in chapter 3 (fig. 4.5). We have not only expanded the ontological-
metamodel with some extra information, but we have also updated the ontological-
metamodel, the verification rules, the visualisation-metamodel, and the exchange-

90

Visualisation
metamodel

Visualisation
model

Visualisation
Exchange

model

Ontological
diagram /

table

Visualisation
Exchange

metamodel

GOSL
XSD /

Ontological
metamodel

au

to
m

at
in

g

au

to
m

at
in

g

co
n

fo
rm

in
g

co

n
fo

rm
in

g

 translating

 is a semantics of

is a syntax of →

Figure 4.2: the visualisation subset of the metamodel

metamodel.
When we combine all partial ontological-metamodels from DEMOSL and extend this
metamodel with the extra information, this results in the ontological-metamodel as shown
in fig. 4.5. This ontological-metamodel includes all the properties we want to store for
the concepts of DEMO but does not involve the diagram metamodel. Therefore, it is an
automation-oriented ontological-metamodel.
Subsequently, for every component of the high level metamodel we need to define
the ontological-metamodel, verification rules, exchange metamodel (XSD), programming
model, visualisation model, and examples for clarification. For every diagram, there is a
definition available for the set of entity and property types called the diagram metamodel.
In general, modelling techniques allow for the representation of different properties of the
object that is being modelled. Only a combination of these models will come close to the
representation of the whole object. Therefore, for every component of the metamodels we
need to define:

1. The ontological-metamodel for the item and its property types.
2. The verification-rules on the collections of items.
3. The exchange-metamodel of the objects.

(a) XSD specification for the set of elements.

(b) XSD specification for the item.

91

Actual
Visualisation /
Methodology
perspective

Figure 4.3: metamodel set. Combination of figs. 2.16, 4.1 and 4.2

(c) XSD specification for the type.

(d) XSD specification for the visual element.

(e) XSD specification for the visual connection.

4. A programming model to implement the verification rules and metamodel.
5. The visualisation model in SEA.
6. Provide an example in SEA.

With this list of models and associated metamodels, we observed that the representation of
the DEMO metamodel is sufficiently complete to verify each DEMO model and exchange
information to recreate the DEMO model. We re-modelled the ontological-metamodel
according to our findings as described in [4] and chapter 3.
This chapter will cover items 1 to 3. Item 4 will be covered in section 5.3, item 5 will be
covered in section 5.2 and finally item 6 will be covered in part II of this thesis.

4.1 Partial Metamodels

In the following sections, we discuss all mentioned models (i.e. ontological, visualisation,
and (visualisation) exchange) and associated metamodels from right to left, from the top
to the bottom as shown in Figure 4.3

92

4.1.1 Ontological-Metamodel

The high level ontological-metamodel is the metamodel that is closest to the metamodel
that lists all ontological principles of DEMO models [25]. For example, from an ontological
perspective, the CAR cannot be an initiator of a transaction kind because an underlying
elementary actor role must always be the initiator. Therefore, this property type does
not exist in the high level ontological-metamodel. The high-level ontological-metamodel
of DEMO is drawn in fig. 4.4.
The diagram shows the existing property types and concepts in black. The newly added
property types and concepts are highlighted in red. This high level ontological-metamodel,
shown in fig. 4.4, is the base for the ontological-metamodel shown in fig. 4.5.

Figure 4.4: DEMOSL high-level ontological-metamodel

In contrast to the high-level ontological-metamodel, the ontological-metamodel below (see
fig. 4.5) does contain all implementation attribute types and property types for the DEMO
metamodel. This ontological-metamodel of DEMO (fig. 4.5) has property types between
the concepts. In fig. 4.5, we did not visualise the removed property types, but these can

93

be found by comparing fig. 3.6, fig. 3.11, fig. 3.15, and fig. 3.13 to fig. 4.5. The example
mentioned above concerning the differences in the metamodels involves the Composite
Actor Role (CAR). If a CAR is an initiator, one should be able to represent it in the
ontological-metamodel. Whenever one designs a CAR that initiates a transaction, this
instantiation of this property type must be present in the DEMO model, and thus needs a
representation in the ontological-metamodel. Therefore, the ontological-metamodel also
has the property type ‘AR is an initiator of TK’ (as shown in fig. 4.5 on the top-right) from
the CAR to the TK. Furthermore, verification rules have been designed to make sure only
the correct property type instantiations can be present in the final ontological-metamodel.

Figure 4.5: DEMOSL ontological-metamodel

The DEMO model is composed of four aspect models (CM, PM, FM, and AM). These
models have their metamodel boundaries as has been visualised in fig. 4.6. Furthermore,
these aspect models can also be visualised in diagrams and tables. All four aspect models
are discussed in detail in sections 4.2 to 4.5.

94

Figure 4.6: DEMO aspect models (Blue=Construction Model (CM), Red=Process Model
(PM), Green=Fact Model (FM), and Yellow=Action Model (AM))

4.1.2 Verification-Metamodel

The verification rules that control the correctness of the DEMO model within the
metamodel can be formulated in logical terms. Every entity type and property type
in the metamodel can be represented as a predicate, with one or two parameters, respect-
ively. In this thesis, we chose to underline the constant value of a written concept. Per
entity type we have formulated all predicates of the metamodel. All equations used are
targeted at a single organisation, regardless of the size of said organisation. The modu-
larity of the DEMO methodology allows for the extension of an organisation within the
same model. It is worth mentioning that if the specific property type has been explained
in another part of this thesis, its predicate will not be described in detail in this chapter.
The base equations for the complete ontological-metamodel are listed hereafter. The tag
after the equation number is used to match the verification programming code. We will

95

start with the predicate of the DEMO model of organisation with elements x.
We use the mathematical symbols for ‘and’ ∧, ‘or’ ∨ and ‘xor’ Y. Let x be a model
element, then we should have:

DEMO(x) =⇒ ConstructionModel(x)

∨ ProcessModel(x)

∨ FactModel(x)

∨ ActionModel(x)

(E.1 ref) DEMO

ConstructionModel(x) =⇒ ConstructionConcept(x)

∨ ConstructionRelation(x)
(E.2 ref) CM

ProcessModel(x) =⇒ ProcessConcept(x)

∨ ProcessRelation(x)
(E.35 ref) PM

FactModel(x) =⇒ FactConcept(x)

∨ FactRelation(x)
(E.49 ref) FM

ActionModel(x) =⇒ ActionConcept(x)

∨ ActionRelation(x)
(E.63 ref) AM

ActorRole(x) =⇒ ElementaryActorRole(x)

Y CompositeActorRole(x)
(E.5 ref) AR

TransactionKind(x) =⇒ ElementaryTransactionKind(x)

Y AggregateTransactionKind(x)
(E.6 ref) TK

The implementation of these verification rules in our automated tool is listed in ap-
pendix F.

96

4.1.3 Visualisation-Metamodel

Communicating a graphical representation of a DEMO aspect model is not trivial. There
are different graphical representation options available, each with its advantages and
disadvantages. One could choose to communicate the image format in BitMaP im-
age file (BMP), Portable Network Graphics (PNG) or Scalable Vector Graphics (SVG)
formats. These formats would give the model interpreter a visualised representation,
but they would lack the underlying linked model information. We could also transform
the graphical representation into a standard commercial format like PowerPoint XML
Presentation (Microsoft) (PPTX) or Microsoft Visio XML Drawing (VSDX), but that
could cause a vendor lock-in. Instead of these formats, we chose to only create the “essen-
tial” attributes of the kinds and types of the diagram. This point of view is new compared
to the DEMOSL [1], which only describes visual properties and the exchange format [86]
but does not address any visuals.
When we represent specific elements in a visualised graphical format, the location of that
element on the diagram is an essential property. The location type attribute is available
for purposes that might differ between software implementation. The size of the element,
on the other hand, is used to visualise elements within a diagram. Finally, we defined a
line as a visualised connection between two or more points. This line has a starting point,
an endpoint and optionally several midpoints to create a path within the diagram.
The information shown in table 4.3 on page 128 provides all allowed Property Types
between the objects of this metamodel, while in the next section we will discuss more
specific visualisation details of the various visualisation aspect models.

Figure 4.7: ARS grammar upgrade example

Due to the complexity reduction of the CM the resulting aspect model visualisation is not
readable for stakeholders that expect a flow. This flow is only available when modellers
have finished the analysis from CM through PM to AM. The DEMO specification has
a language for the AM that is semi-formalised and we tried to create a formalised form
for that model (see fig. 4.7). This specification, though formally more correct, is still not
readable for many stakeholders. Visualising the final aspect model AM in a recognisable
form should have positive effects on the stakeholders comprehension of the DEMO model
because process visualisation on implementation level is widely spread.

97

When visualising an (aspect) model the visualisation is a representation of the model.
On a meta-level one needs to define the elements that are visualised and the metamodel
components of those elements that are used in this visualisation. The omission of this
component visualisation definition makes the visualisation arbitrary. Defining these visu-
alisations requires a mapping specification of every visualisation to the entity and attribute
of the metamodel it is representing. These mappings also need translations from avail-
able values to required visualisations. For example, the transaction sort of a Elementary
Transaction Kind (ETK) is defined as original, informational or documental and can be
visualised as a red, green or blue diamond, respectively. While creating the models and
tooling and trying to visualise the model for various stakeholders this omission of the
mapping became apparent, whereas this never happens with the small examples from the
educational material.
The mapping of the visualisation is the definition of viewpoints of DEMO modelling. At
this moment just a few viewpoints have been defined in table 4.3, but more exist and
can be defined for specific stakeholders. Viewpoints that cover multiple notations have to
be defined to cover the representation combinations of DEMO and other notations (e.g.
ArchiMate).
Each viewpoint needs, next to the definition and mapping, the semantic explanation
of the information represented. Not only does every element and connection needs an
explanation, but also the whole viewpoint needs an explanation, and even a definition.
The current viewpoints (e.g. diagrams and tables) have neither definition nor explanation
of what they represent. The OFD does show the entity types, attribute types, property
types, and product types (the product type is another viewpoint of the ETK) but the
representation definition is not clear. This OFD has been interpreted as the data model,
the creation of data due to transaction acts, the relational model, the possible-state
model and the authorisation model. Various interpretations of the OFD are possible and,
therefore, it is likely that the OFD contains too much information. We have tried various
diagrams with high level, detailed information, and all sorts of combinations to transfer
the model to the stakeholder. Our experience tells us that the information density of each
of the DEMO diagrams and tables is too much for the average stakeholder to grasp.

4.1.4 Exchange-Metamodel

As discussed in section 5.1.2, a number of tools can model (partial) DEMO models, while
some of these even have a built-in engine to execute the actual models. It would be
beneficial to be able to export and import DEMO models across tools because specific
tools can have distinct benefits when used in a certain organisational environment.
In addition, given the complementarity between e.g. BPMN, ArchiMate, e3Value, and
DEMO, it would also be beneficial to bridge the gap between the respective models. Ex-
perimental results regarding the potential benefits of this have been reported in e.g. [63, 64,
51, 87, 88]. Bridging the gap to other modelling tools requires DEMO modelling tools to
be able to export (and import) DEMO models. To this end, an exchange-metamodel has
been created that enables the exchange of both the actual model, including the different
aspect models, as well as their visualisations. The exchange-metamodel enables trans-

98

lation and connection to various other languages and includes model extensions which
allows to store models in other modelling languages such as ArchiMate and Business
Process Model and Notation (BPMN). Due to its common availability in modern-day
development environments, XSD is used as the exchange-metamodel base.
The SEA based modelling tool has been extended with the aforementioned export capab-
ility. This is done in order to verify the exchange-metamodel, and to experiment with the
export of DEMO models towards a gamification application (as illustrated in fig. 6.6).
The concept of a data-exchange-metamodel is intertwined with the concept of a
metamodel as explained in section 2.6. We will formalise the data-exchange-metamodel in
terminology that a computer can understand. We have chosen to represent the exchange-
metamodel in XSD, which is a commonly used technique. The alternative structure, XML
Metadata Interchange (XMI), has no broad implementation and, as such, we rejected it
as a potential candidate. The exchange-metamodel represents all entity types and prop-
erty types of the ontological-metamodel. Furthermore, it is unambiguously readable for
a computer. The proposal of a DEMO exchange format [89, 86], based on DEMO 2, is a
good start for creating our exchange-metamodel.
Despite the current version of DEMO being version 4 (during writing of this thesis), the
modelling itself has not changed and is still equivalent to DEMO 2. No attempt has
been made to upgrade the proposed formats to DEMO 3 before. Above all, we have
based our research on DEMOSL version 3.7, and, therefore, this version is already an
upgrade of the existing format. DEMO 4 introduces a new element (transactor) but does
not invalidate DEMO 2 or DEMO 3 models and, thus, the decision for choosing these
older metamodels for representation of the exchange-metamodel are still valid. In future
research this exchange-metamodel has to be adapted to the features of DEMO 4.
The existing paper [86] proposes an exchange format for the FM and the CM. The
XSD for CM proposes the storage of the id, name, initiator(s), executor, and information
link and result type of the transaction kind. This information is based on older DEMO
specifications and, therefore, lacks essential information from version 3.7. We decided to
build this XSD structure for every element type in the new DEMOSL proposal structure.
The first XSD structure is the “name” element. Just like any identifiable element, the
whole DEMO model has to have a name. Next to the name, every component of the
DEMO model has an internal id. We will not mention these attributes while using the
exchange-metamodel, but we do model them.
The next XSD structure is a “Global Unique IDentfier (GUID)” element. A GUID iden-
tifies all types and kinds within the exchange-model and is a 128-bit number used to
uniquely identify information in computer systems. In listing D.36 the reader can find
the complete specification of this used type.
Another XSD structure contains “rule” elements. Rules restrict the naming of the ele-
ments used in e.g. a CM. One of the rules we would like to mention in this thesis is the
transaction kind name rule. The name is built up of lower case words as specified in the
DEMOSL [1]. The XSD notation enables enforcement of this rule. It is important to note
that we allow empty names for practical use purposes during modelling. Name definitions
are listed in appendix D.12
The full set of XSD specifications is already made available for evaluation purposes to

99

some research groups. The full specification with examples will be publicly available at
the end of this research project. More information on the location of this full specification
will be published on multiple sites 1.
A specific class of model exchanges needed in practice is the exchange between DEMO and
‘Voorwaarden scheppen voor de Invoering van Standaardisatie ICT in de bouw’ (VISI). As
mentioned in section 2.1, VISI is an early descendant of DEMO which has now evolved into
the ISO 29481-2:2012 (BIM-related) standard for the construction sector. The exchange
model between DEMO and VISI has been defined in the standard ISO 29481-2:2012.

4.1.4.1 Data-Exchange-Metamodel

The core of the data-exchange-metamodel is the set of entity types, property types, and
diagrams. The ontological-metamodel contains all concepts and references the model
concept itself (DEMOModel) (fig. 4.8). Exchanging information of a DEMO model in
such a way that the model can be reproduced at another machine makes it necessary that
all these concepts are incorporated in the data-exchange-metamodel.

Figure 4.8: DEMOSL Core exchange-metamodel

The notation used for the data-exchange-metamodel is defined in the XSD schema spe-
cification (see listing D.1). The current site of the Enterprise Engineering institute (EEi)
fully qualified domain name (FQDN) is the chosen namespace for the XSD.
The exchange model uses the element “DEMOmodel” in listing D.2 and the attributes
(e.g. “DEMOModelName”) in listing D.3 are used to identify the DEMO model.
The core model also has collections of every element. In appendix D.2 the reader can find
the list of specifications for the core metamodel, whereas appendix D.4 lists the collection
of diagrams.
Finally, the data-exchange-metamodel specifies a storage space for the verification results
(see listing D.107 in appendix D.15 on page 94).

1http://demo.nl and http://teec2.nl

100

4.1.4.2 Visualisation Exchange-Metamodel

All elements that have been described in the previous section have a visualisation element
in the exchange metamodel. The structure of the visualisation elements is similar to
the data-exchange-metamodel structure. All visualisation elements reference the data
elements in the same exchange model, and add the visualisation attributes for a specific
diagram to the data element (e.g. size, location, way points).

4.2 Construction Metamodel

The CM is one of four aspect models that focuses on transaction kinds and actor roles.

4.2.1 Improvements in the CM

Figure 4.9: DEMOSL CM ontological-metamodel 3.7

From the validation, section 3.3.2, we know that we had to solve eight issues in the
metamodel.

� CM.b the mandatory presence of a TK for an ATK;
� CM.c the mandatory presence of an EAR for a CAR.
� CM.d the missing access link from an EAR to an ATK;
� CM.e the lack of the SoI;
� CM.f the missing CAR to TK Property Types;
� CM.g the missing CAR hierarchy;
� CM.h the missing TK in CAR Property Types;

101

� CM.i the missing interstriction (access) between ATK, CAR and SoI;

The items will be referenced in all explanation of the formulas.

Figure 4.10: DEMOSL CM data metamodel proposal

ConstructionConcept(x) =⇒ TransactionKind(x)

∨ ActorRole(x)
(E.3 ref) CMcs

Source and target kinds and types are referenced by the s and t respectively.

ConstructionRelation(〈s, t〉) =⇒ executor(s, t)

∨ initiator(s, t)

∨ access(s, t)

∨ TKcontainedinATK(s, t)

∨ TKcontainedinCAR(s, t)

∨ ARaccessATK(s, t)

∨ EARcontainedinCAR(s, t)

∨ CARcontainedinCAR(s, t)

(E.4 ref) CMrel

4.2.2 Organisation Construction Diagram

The OCD is a diagram that expresses a part of the CM. More specifically, it contains
the TK, ATK, EAR and CAR concepts. The visualised property types are the initiator,
executor, and access property types (see section 4.7).
The representation of the OCD is used for the communication of the CM. The OCD allows
TK, ATK, EAR, CAR as valid elements and initiator, executor and access (interstriction)
as valid property types.

102

Figure 4.11: DEMOSL CM OCD visualisation

The OCD can be represented using logic. The main equations are written in the eqs. E.27
to E.30.
The exchange model for an OCD has elements for the TK, ATK, EAR, CAR, and connec-
tions (property types). Together with an id, name, and formulation these elements and
connections make up the complete OCD. The XSD code can be found in listing D.108.

4.2.3 Transaction Product Table

The visualisation of the transactions and their products is a table with four columns: the
transaction kind identification, the transaction kind name, the product kind identification
and the product kind formulation. The first two columns are filled by transaction kind
attributes Identification and Name. The last two columns are the properties Identification
and Name of the Independent Fact Kind. These two elements have a one-to-one relation
and always exist. The main equations are written in the eqs. E.7, E.31, E.32 and E.56.

4.2.4 Bank Content Table

The BCT is the list of information that is stored in the bank. It is a collection of entities
and attributes (facts). The main equations are written in the eqs. E.33, E.34 and E.59.

4.2.5 Elementary Transaction Kind

A TK represents the abstraction of a transaction as defined in the PSI-theory. An sum-
mary of this theory has been presented in section 2.1.1. The TK concept has a relation
to the concept of ATK where it can be contained to form bigger information banks. It
can also be contained in a CAR where it can hide to be part of an underlying scope of
interest. Compared to DEMOSL 3.7 [1] we added the contained-in property type between
a TK and the CAR elements. This property type has been formulated in eq. E.10 ‘TK-
contained-in-CAR’.

4.2.5.1 Ontological-Metamodel

The ontological-metamodel in fig. 4.12 shows the TransactionSort attribute and the de-
scription. The last attribute was requested by the focus group to be able to exchange
meta-information about the TK.

103

Figure 4.12: TK ontological model

4.2.5.2 Verification Rules

The base of the verification rules of an elementary transaction kind is that the TK is
part of the collection of elementary transaction kinds. Equation E.8 (page 107) is the
consequence of the eq. E.6 (page 107) that states that a collection of transaction kinds is
the union of the elementary and aggregate transactions.
According to the PSI-theory the executor and the initiator of a transaction kind should
be an actor role. This can be an elementary actor role or a CAR as outlined in eqs. E.7
and E.8.
When the executor of a TK is an EAR, and this EAR is part of a CAR, the CAR is also
an executor of the TK. This equation is derived in section 4.2.7.2.
The ontological-metamodel property types can be shown in a logical way. The property
types in the ontological-metamodel denote that a TK can be contained in both an ATK
and a CAR. We can conclude from the ontological-metamodel that eq. E.9 and eq. E.10
should hold. This last equation solves issue CM.h.
When a TK is contained in a CAR, the initiator (eq. E.8) and executor (eq. E.7) of that
TK must also be part of the CAR as in eq. E.11 and eq. E.12. Only then can we assure
that the initiation and execution of other transactions are well defined.
The example in fig. 4.13 shows that CA4, where T2 and T3 are part of CA4, does not
comply with eq. E.11 and E.12 because it is missing the involvement of A1 and A3.

104

Figure 4.13: TK contained in CAR example

Next, the number of TKs should be equal to the number of executing Action Research
(AR), if and only if the executing AR is the lowest (or elementary) executor of that
transaction.

ElementaryTransactionKind(t) =⇒ ∃a [executor(t, a)] (E.13 ref) TKexistAR

ElementaryTransactionKind(t) =⇒ ∃a [initiator(t, a)] (E.14 ref) TKexistARi

ElementaryTransactionKind(x) ∧
ElementaryActorRole(y) ∧

executor(x, y) ∧
initiator(y, x) =⇒ SelfInitiator(y)

(E.15 ref) ARself

4.2.5.3 Exchange-Metamodel

A transaction in DEMOSL 3.7 has the properties of a name, transaction sort, and an
identification. We discussed in the focus group and agreed to implement the ID of the
exchange data as an attribute. The code is listed in listing D.27 and given as example in
this section.

<xs:complexType name="TransactionKind">

<xs:sequence>

<xs:element name="Identification" type="TransactionKindId"></xs:element>

<xs:element name="Name" type="TransactionKindName"></xs:element>

<xs:element name="TransactionSort" type="TransactionSort" default="

unknown"></xs:element>

105

</xs:sequence>

<xs:attribute name="Id" type="TransactionKindGuid" use="required"/>

</xs:complexType>

Listing 4.1: Transaction kind

This exchange rule set described in XSD can sufficiently restrict field content for each
TK.

4.2.6 Aggregate Transaction Kind

ATKs may be designed with or without contained TKs. In the organisation the ATK is
outside the SoI, therefore, we don’t know about the contained TKs.

4.2.6.1 Ontological-Metamodel

The ATK has the same attributes as the TK, except for the TransactionSort (fig. 4.14).

Figure 4.14: DEMOSL ATK metamodel

4.2.6.2 Verification Rules

As can be seen in fig. 4.14, no property types are coming from the ATK. Therefore, no
collection equations have been formulated for the ATK.

ARaccessATK(x, y) =⇒ ActorRole(x) ∧ AggregateTransactionKind(y) (E.16 ref) ARaccATK

FTcontainedinTK(x, y) =⇒ FactType(x) ∧ TransactionKind(y) (E.59 ref) FTinTK

4.2.6.3 Exchange Metamodel

In the exchange model, the ATK is modelled explicitly. Apart from the TransactionSort
element, that is left out, this exchange model is equivalent to the TK exchange model as
shown in listing D.28.

106

4.2.7 Elementary Actor Role

4.2.7.1 Ontological-Metamodel

The EAR data-metamodel has five property types to other elements (fig. 4.15).

Figure 4.15: DEMOSL EAR metamodel

4.2.7.2 Verification Rules

Verification rules for the EAR are listed in eqs. E.7, E.8 and E.18. Equation E.19 makes
sure a TK can only be executed by a single EAR.

executor(x, y) ∧
executor(x, z) ∧

ElementaryActorRole(y) ∧
ElementaryActorRole(z) =⇒ y = z

(E.19 ref) EARexs

Equation E.20 solves the issues CM.b and CM.d of sections 3.3.2 and 4.2.1 by adding the
access directly to an TK and adding the possibility to create an access property type to
an EAR. Next, this equation solves issue CM.i, CM.f, and CM.c.

ARaccessETK(x, y) =⇒ ActorRole(x) ∧ ElementaryTransactionKind(y)
(E.20 ref) ARaccETK

The executor of a transaction kind should be an actor role. This can be an elementary
actor role or a CAR. When the executor of a TK is an EAR, and this EAR is part of a
CAR, the CAR is consequently also an executor of the TK. We use the formulation of
CAR and EAR property types, i.e. eq. E.22. As seen from the execution viewpoint of the
transaction kind we get eq. E.21.

107

ElementaryTransactionKind(x) ∧
ElementaryActorRole(y) ∧
CompositeActorRole(z) ∧

executor(x, y) ∧
executor(x, z) =⇒ EARcontainedinCAR(y, z)

(E.21 ref) TKme

The graphical representation of eq. E.21 is in fig. 4.16.

Figure 4.16: DEMOSL EAR in CAR as executor

4.2.7.3 Exchange Metamodel

The listing listing D.29 shows the EAR specification.

4.2.8 Composite Actor Role

The CAR is the embodiment of multiple actor roles at once. This concept allows for
modelling the unknown actor role or the ‘don’t want to know’ actor role.
In the DEMO methodology the concept of SoI is used to restrain the modelling effort to
a selected portion of the organisation. Absent from the DEMOSL metamodel [1], is the
SoI itself. To be able to model this concept it could be added, but closer examination of
the concept reveals something more interesting.
We argue that the concept of SoI is equivalent to the concept of CAR within the model-
ling of CM. When starting to model an organisation, the first actor inside the SoI is a
composite actor role. The methodology describes that this composite actor role stays in
place until one is able to retrieve the information to redesign the internal actor roles of
this composite actor role into a white-box model. The CAR does not vanish. Instead, the
CAR becomes functionally equal to the SoI as can be seen in fig. 4.18 and 4.19. There-
fore, the only difference between an SoI and a CAR is its appearance in the diagram. The
boundary transactions of the SoI are the interacting transactions in the diagram.
One could still argue that a SoI could be smaller than all transactions that interact with
the CAR. This can be illustrated with an extra transaction to CA0 in the construction
model that is not shown in 4.18. The question that remains is whether the CAR, used
as SoI is the same in the diagram as in the model. In practice the SoI never exceeds the
diagram boundaries and therefore, de-facto, the CAR can be used for the same purpose.
When using the CAR as SoI some nice features for the hierarchy of actor roles appear.

108

This being said, combined with the ability to nest CARs it becomes clear that an EAR
within multiple CAR is not modelled as a construction. It is possible to model this
hierarchy as a functional structure, though this is not ontological. Therefore eq. E.26 has
been added.

4.2.8.1 Ontological-Metamodel

In the CM, the CAR and the EAR are modelled as separate entity types. By modelling
the CAR (fig. 4.17) as a specialisation of an EAR, the property types of the elementary
actor role are also available for the composite actor role. This change allows us to model
the composite actor role ‘customer’ in the pizza case [25, fig 16.8] where the customer is
the initiator and executor of a TK without any elementary actor roles present.

Figure 4.17: DEMOSL CAR metamodel

Figure 4.18: CM modelling step 1 Figure 4.19: CM modelling step 2

4.2.8.2 Verification Rules

The CARispartofCAR in fig. 4.17 property type describes that the CAR contains another
level of CAR. This means that if a CAR is described in more detail, it is connected to
the CAR it belongs to. We have formulated these properties in eqs. E.22 to E.25.
When an EAR can belong to multiple CARs, the CARs have been chosen from a functional
perspective. In DEMO this perspective is not preferred. Often the construction CAR is
confused with the functional concept of a department.

109

EARcontainedinCAR(x, y) ∧
EARcontainedinCAR(x, z) =⇒ y = z

(E.26 ref) EARxinCAR

For instance, when modelling an organisation, the functional components like depart-
ments are needed for stakeholders to understand the structures of the organisation. Given
DEMO’s focus on the ontological essence of organisations, it does not provide functional
concepts like departments. It does, however, provide the constructional concept of Com-
posite Actor Role (CAR). CARs are now allowed to be used to represent functional
concepts such as departments, enabling modellers to model departments (or other organ-
isational units) as organisations within organisations. This hierarchical relation has been
added to the metamodel.

4.2.8.3 Exchange-Metamodel

The exchange model of the CAR is equivalent to the EAR. The type references have
been renamed to match the composite intention. The listing listing D.30 shows the EAR
specification.

4.3 Process Metamodel

4.3.1 Improvements in the PM

In the PSD the initiation of the first request is done using the property type ‘is initiated
from’. This would be sufficient if a step is always initiated from the same step. When,
instead of the promise-step, another step is used for initiation this cannot be modelled.
Therefore, the property type has to be remodelled as a self-reference in TPSK ‘TPSK is
initiated from TPSK’.

Figure 4.20: DEMOSL PM metamodel 3.7

110

Figure 4.21: DEMOSL PM metamodel proposal

4.3.2 Process Structure Diagram

The PSD is a diagram that contains elements from the PM. More specifically, it contains
the TK, EAR, and CAR. The visualised property types are the call-link and the wait-link
property types (see section 4.7)

Figure 4.22: DEMOSL PSD visualisation proposal

The PSD can be represented using first-order logic. The main equations are written in
eqs. E.38 to E.40.
The exchange model for a PSD has elements for the TK, initiator, EAR, CAR, and
Connections. Together with an id, name, and formulation these elements are sufficient to
describe the complete PSD. The XSD code can be found in listing D.109.

111

4.3.3 Transaction Process Diagram

The TPD is a diagram that contains elements from the PM. More specifically it contains
the TK and TPSK. The visualised property types are the process order, call link and the
wait link (see 4.7)

Figure 4.23: DEMOSL TPD visualisation proposal

The TPD equations are shown in eqs. E.41 and E.42. The exchange model for a PSD
has elements for the TK, TPSK, and Connections. Together with an id, name, and
formulation these elements are sufficient to describe the complete TPD. The XSD code
can be found in listing D.110.

4.3.4 Elementary Transaction Kind

The ontological-metamodel and exchange model have already been presented in sec-
tion 4.2.5.1 and 4.2.5.3, respectively. To apply the TK in the PM environment only
extra verification rules need to be introduced.
A transaction, combined with the general step kind, will lead to a transaction process
step kind. This equation will be explained in the TPSK in section 4.3.6.2.

4.3.5 General Step Kind

The GSK is a concept to enumerate all possible steps in the complete transaction pattern.
This is mainly used to create the cross join between the transaction kinds and the possible
transaction steps.

4.3.5.1 Ontological-Metamodel

The ontological-metamodel is a single entity representing all instances of acts and facts
in the C-world and the P-world.

112

Figure 4.24: DEMOSL GSK metamodel

4.3.5.2 Verification Rules

We define a general step kind of a TPSK as the TPSK with the signature of the GSK.
A subset of all GSKs is the set of request step kinds as shown in eq. E.44. A TPSK can
only be of a single GSK. This is formulated in formulaE.46.

4.3.5.3 Exchange-metamodel

General step kind is enumerated in appendix D.11, listing D.64. It consists of all steps,
the act, and the fact. These steps start with initial, request, requested, etc. The list also
contains all revoke acts and facts, and the formalised notation of the words.

4.3.6 Transaction Kind Step Kind

A TPSK is the smallest ontological process concept. It represents the steps taken in every
TK.

4.3.6.1 Ontological-Metamodel

Figure 4.25: DEMOSL TPSK metamodel

4.3.6.2 Verification Rules

For every transaction process step kind there is a corresponding transaction kind as shown
in eq. E.47. Furthermore, every TPSK request (all five) can be initiated from any TPSK
from another or the same transaction as shown in eq. E.48.

4.3.6.3 Exchange-Metamodel

The listing listing D.31 shows the TPSK specification.

113

4.4 Fact Metamodel

The fact metamodel is about the data perspective of the DEMO models. There is a vast
amount of literature available on the topic of data modelling. Therefore, we are not going
to dive into the basics of data modelling and will focus on data perspective of DEMO
methodology instead. We formulate relations (or property types):

relation(x, y) =⇒ pdomain(x) ∧ prange(y) (E.58 ref) ATrel

This rule formulates an attribute:

attribute(x, y) =⇒ adomain(x) ∧ arange(y) (E.57 ref) AT

And the relation between transaction kinds and the created data:

event(x) =⇒ baseEntity(x) (E.61 ref) Event

∃x [baseEntity(x) =⇒ event(x)] (E.60 ref) BE

Relations (or property types) are unique in the model:

property1(x, y) =⇒ ¬property2(x, y)

property2(x, y) =⇒ ¬property1(x, y)
(E.62 ref) PT

In the FM we have an event type entity type. This entity type is intended for modelling the
transaction kind product in the FM. When we combine all partial ontological-metamodels,
the event type entity type is no longer valuable. The transaction kind represents the
same concept, the transaction kind product. Therefore, the event type entity type can be
replaced by a property type between TK and primal entity type.

114

4.4.1 Improvements in the FM

Figure 4.26: DEMOSL FM metamodel 3.7

115

Figure 4.27: DEMOSL FM data metamodel proposal

The original ontological verification rules have some concepts that have made it directly
to the ontological-metamodel of the fact aspect model, including Fact Type and Entity
Type concepts. Other concepts will be removed or reduced because of the following
reasoning. First, we have removed the Constructed Entity Type as it is a concept that
allows reasoning about the specialised entities derived from an Entity Type. In the data
model proposal this results in the Entity Type, like the generalisation property type
between Constructed Entity Type and Entity Type suggested in the DEMOSL 3.7 FM
metamodel. The same holds for the generalisation and aggregation property types of this
constructed entity type. Both property types end in the Entity Type Set which, in turn, is
an Entity Type concept on its own. This leaves the three property types as self-property
types on the Entity Type. Next, we have also omitted the Event Type concept which is a
data perception of the process events of transaction kinds and TPSK. Events are related
to C-acts and C-facts and to a concern concept in the P-world. Therefore, the concerns
property type is created between the Elementary Transaction Kind and the Fact Type
concept as shown in eqs. E.50 and E.51.

116

4.4.2 Object Fact Diagram

The OFD is a diagram that contains elements from the FM. More specifically it contains
the IFK, ET, and AT. The visualised property types are the reference, generalisation,
specialisation, aggregation, and the concerns property types (see section 4.7)
The main underlying equations are written in the eqs. E.52 to E.55.
The OFD is listed in appendix listing D.111.

4.4.3 Fact Type or Independent Fact Kind

The Independent P-Fact Kind (IFK) is the corresponding fact that concerns the transac-
tion. It has a product formulation, product kind, and a 1:1 relation with the transaction.
The information about an IFK is stored in the FACT TYPE entity. Attributes are not
added to this entity.

Figure 4.28: DEMOSL IFK metamodel

concern(x, y) =⇒ ProductKind(x) ∧ ElementaryTransactionKind(y) (E.56 ref) PKconTK

For every transaction(x) there is a corresponding product(y). This product has a formu-
lation. This formulation contains at least the base entity type name and optional other
referenced entity type names.
The IFK is listed in appendix listing D.32.

4.4.4 Entity Type

Figure 4.29: DEMOSL ET metamodel

The ET is listed in appendix listing D.33.

117

4.5 Action Metamodel

The AM is the aspect model with the largest amount of details about the enterprise. These
details are largely based on the CM, PM, and the FM. Therefore, references to these
aspect models should be used in order to keep the AM consistent with the other aspect
models. Traditionally the ARS is specified in a natural language and is only partially
covered by a incomplete grammar. This allows for freedom of expression while being
readable for humans. Though the advantage of the readability is large, the disadvantage
of the informal language makes it difficult, and at this moment even impossible, to do an
automated model verification and validation. Where the other three aspect models have
always been described in a graphical way, the AM has been described in a textual way
with a semi-formal grammar construction. This makes communication towards different
users of these models unnecessarily complex. All aspect models must have a textual
and graphical representation of at least the essential features of the model to serve both
stakeholder groups with their visual preferences.

4.5.1 Improvements in the AM

We added a graphical representation to the AM and improved the grammar of the ARS.
All grammar references to other elements of the DEMO model have been connected in
the action model.
The AM is the least developed and least used aspect model of DEMO. For automation
we need this model to represent all the details about business rules and their property
types to facts and processes.
The AM has no graphical representation in DEMO 3.7. One might argue that the dis-
tinction between the event, assess, and result parts is actual graphical representation of
AM due to the fact that in educational slides these sections of the grammar are often
visualised with a background colour. Nevertheless, this representation is not different
from the colouring of a grammar in a modern integrated developing environment.
The existing AM has four essential features.

1. ET linked to a TK; it needs parameters (with-clause) to verify that all essential
information is present to perform the step.

2. ARK linked to another step; it has to wait for other TPSKs to finish
3. Inner conditions defined in the ARK have to be checked.
4. Based on these conditions the linked follow-up actions have to be triggered.

Except for the feature number three, the features have a connection to other parts of the
DEMO model. Connections can be visualised as a line, like it has been done in the other
three aspect models.
So, let us define the connections for the AM.

� With
The with-clause (see section 4.5.3.12) connects several attributes of entities (from the
FM) to either the agendum-clause, while clause, or action clause. These connections
will be represented with a solid line with a winged arrow head. The with connection
can connect to the when, while, and action clauses.

118

� While
The while clause (see section 4.5.3.11)connects a different transaction step (from
the PM). This connection will be represented with a dotted line with a solid arrow,
just like the wait link in the PSD.

� Action
The action clause connects a transaction step with another step. This is the same
connection as a call link in the PSD.

4.5.2 Action Rule Diagram

Figure 4.30: ARD representation example

Figure 4.30 gives an impression of the visualisation of this Action Rules Diagram (ARD).
While not all arrows have been drawn to the right specifications, this early representation
does give a instantiated view on the metamodel.

119

When we follow the example of fig. 4.30, and start at the TPSK1 placed on the top of the
diagram, we can see the process unfolding. For the TPSK1 the Action Rules Kind (ARK)
ARK1 is the action rule that needs to be evaluated. In the when clause the required
information can be expressed with entity and attribute types. In the following step, the
while clause, the process can wait on the completion of the TPSK 5. When these steps
have been completed the assess clause evaluates whether the conditions, that reference
the information in ET2, are true. If that is the case, next then clause triggers TPSK2
and as a result ARKs 2 and 6 are evaluated.
The Action Rules Diagram (ARD) is a diagram that visually represents a single action
rule, like the ARSs represents the same information in a textual way. The ARD and ARS
are representations of the same information. This representation of the AM has following
elements for visualisation purposes: TPSK, ET, AT, and Grammar components when,
while, assess, if then and else.
The ARD can be represented using first order logic. The main equations are:

ardDiagram(d) =⇒ DiagramType(d) (E.66 ref) ARDd

ardDiagramElement(x, d) =⇒ ActionConcept(x)

∧ ardDiagram(d)
(E.67 ref) ARDi

ardDiagramRelation(r, d) =⇒ ActionRelation(r)

∧ ardDiagram(d)
(E.68 ref) ARDr

ardDiagramRelation(〈s, t〉) =⇒ when(s, t)

∨ while(s, t)

∨ with(s, t)

∨ trigger(s, t)

(E.69 ref) ARDrel

The exchange model has elements for the TPSK and the connections. Other elements are
yet to be added. The XSD code can be found in listing D.112.

4.5.3 Action Rule Specification

The information in the existing AM is not detailed enough to verify a model. After having
analysed the existing, published action specifications we have created a grammar that
closely represents the existing examples and matches the wishes of the expert group that

120

helped to create the exchange model. The verbalisation used in the DEMOSL grammar
of the AM can also be specified in property types to the other aspect models. These
property types are described in the ontological-metamodel in section 4.5.3.1, whereas the
logical representation of these rules has been explained in section 4.1.2. Contrary to the
information presented in the previous parts, this section will describe all relevant rules
one by one referencing different formats. First, the grammar notation for the partial rule
will be presented, followed by the exchange model notation of the same part. Where the
rules are trivial only a reference is made to the complete set of rules for the DEMOSL
proposal (appendix E), to the grammar (appendix C) and to the Exchange metamodel
(appendix D)

Original grammar Listing Page Original grammar Listing Page
Slide Line Slide Line
4 1- 6 B.2 8 14 1 B.6 10
4 7-10 B.3 8 14 2 B.7 10
4 11-22 B.5 9 14 3 B.8 10
5 1 B.12 12 14 4 B.9 10
5 2- 5 B.10 11 14 5 B.10 11
5 6-11 B.13 12 14 6- 9 B.11 11
5 12-15 B.4 9 14 10-12 B.14 13
5 16-19 B.15 13 14 13-14 B.9 10
5 20-23 B.1 8

Table 4.1: Action Rule references to DEMOSL 3.7

4.5.3.1 Ontological-Metamodel

So, for the AM, we need some property types between the action rules and the facts that
come into existence or that are referenced from e.g./ action rule conditions. Therefore,
we added property types for the ‘then’, ‘else’, and ‘with-clause’ specifications. Also, the
property references have been transformed into property types which connect to other
parts of the model. These property types should be combined with the attributes in
action rule to model the complete AM.

4.5.3.2 Action Rule References

In appendix C.5 we have listed a few dozens of published references of action rules. These
rules violate the proposed grammar in one way or another. The common reasons for
violating the grammar are:

� Common mistakes that are introduced by having no automated checks on the gram-
mar. These include a missing semi-colon, mistaken use of ‘for’ versus ‘of’ keyword,
‘a’ instead of ‘some’, etc.

� The removal of not needed assessment conditions. If the <no specific condition>
condition appears, the proposed grammar leaves out the empty condition as well as
the keyword.

121

� Addition of [] to mark the language part that needs to identify an attribute. This
enhances the readability, for humans and for the parser.

� Value references that are written in language instead of in numbers, and often
without units of measurement.

� Changes of [] to () in case of a transaction step reference.
� The usage of a condition expression in a with-clause statement. This is not allowed

according to the grammar.
� Wrongly placed conditions in the truth clause that should be in the while clause.
� Otherwise formulated sentences that do not comply with the reasoning form.
� Date references (Today, Now, Month) that are used as if they were values. The

grammar does not allow for that type of reasoning with named values.
� ‘For each’ references were not in the original grammar. All scripts containing the

for each (in the while, with or action clause) have been rewritten.
� A lot of scripts were missing product references (e.g. is the transporter) that have

to be added (e.g. of Transport).
It has been noticed that the usage of capitals were not consistent throughout the action
rule specifications. We have decided to match the names on the referenced objects in the
other aspect models instead of keeping strict references in the grammar.

4.5.3.3 Reserved Words

Grammar is build of words. These words have to appear in a particular order. Some
words have a special meaning at a certain location in the grammar. When words have a
very specific meaning and should not be confused with other words at specific locations,
they can be excluded from other uses. Most programming languages have the reserved
words ‘if’, ‘then’, and ‘else’. The original and the proposed grammar for DEMO 3 have
the reserved words as listed in appendix B.1 and C.3, respectively. It is worth noting
that the original grammar of DEMOSL 3.7 has more reserved words than the proposed
grammar.
Though no reserved words are really needed in the proposed grammar when using the right
distinctive characters, certain words can cause some misunderstanding of the meaning of
the sentence. Especially when the grammar lexar words are used in a place where they can
have a double meaning (e.g. the tire of car of rental can be understood as the [tire]

of [car] of [rental] which will result in an error or the [tire of car] of [rental]).
To use lexar words in this context the parser can be helped by putting square brackets
around the variable where needed. Some examples have exactly this adjustment (e.g.
C.5.1 on page 24))
The exchange model has no reserved words because all the characters can be used within
the internal coding of an Extensible Markup Language (XML).

4.5.3.4 Base Types

Base types are the core of the grammar and of the exchange model. Though in itself they
are meaningless, we need them for other parts of the metamodel. The listing is used in
all kinds of rules and is added for reference purposes in listing C.4 and listing C.5.

122

The exchange model uses the base type specifications of XSD and the names and id’s that
are defined in D.12 and D.8, respectively.

4.5.3.5 Element Id’s

The DEMOSL 3.7 specification has six rules concerning the identity format of a specific
element. Looking at the entry points of the formats, these are not used in the original
grammar. Though we have created extended formatting of these identifiers, we will copy
them as they do specify the original formatting of the element identification. The original
formatting is specified in listing B.2, whereas the proposed grammar specification can be
found in appendix C.1.
The Exchange Model definitions for the element Id’s have been described in D.10 and
match the grammar rules for the equivalent Ids.

4.5.3.6 Product Kind Formulation

The product kind formulation describes the result of the transaction kind. This is a way
of describing the product in the past tense. Like element Id’s, this rule is not directly
used in the grammar. It could be used, in an adapted rule, to verify the formulation of
the product kinds. The original specification is in B.4. The Exchange Model does not use
the rule for the product kind formulation.

4.5.3.7 Element Names

The original and proposed element names of the DEMOSL elements have been described in
the rules in listing B.3 and C.2, respectively. Both sets of rules are not used in the grammar
directly. This causes some variations in naming conventions for attributes, objects, and
other elements. The proposed grammar does not distinguish these elements as they are to
be related to the original elements in the other aspect models. The Exchange Model does
have the name conventions for the element names and can be found in appendix D.12.
The naming convention for elements is checked in the Exchange Model.

4.5.3.8 Grammar Entry Point

The mainline in the grammar is the ‘action rule specification’. Here the event, assess, and
response parts are distinguished. The original grammar start (listing B.6) is equivalent
to the proposed grammar (listing C.6). The proposed grammar has an extra name part,
the name of the rule, equivalent to the information in the XSD (listing D.114). We added
the rule name to have distinguishable names of rules in our model.

4.5.3.9 Event Part Specification

The original grammar places the with after the while clause. This means that the agendum
gets two lists of with parameters which can be indistinguishable. We reversed the order

123

of these clauses and added the with-clause of the agendum-clause within this agendum-
clause. This is listed in B.7 and C.7. The exchange model mimics the order of the
grammar in listing D.115.

4.5.3.10 Agendum Clause Specification

The original grammar stops at the perfect tense intention. In the examples, it can be
seen that a transaction step reference is also present. This is now addressed by the
proposed grammar. The step reference and the with-clause are added to the grammar in
the agendum-clause and both are listen in B.8 and C.10.

4.5.3.11 While Clause Specification

The original grammar for the while clause has a single with-clause. It also misses the
transaction step reference that is used in the examples. The proposed grammar adds
multiple with-clauses to a while clause and references the transaction step. This is listed
in B.10 and C.13.

4.5.3.12 With Clause Specification

The with-clause is, in fact, a reference to the entity and attribute (with even the data
type) that is being used for the transfer of information between initiator and executor
(and vice versa). This information can be written in natural language (listing C.11) or
in an exchange model with references to the specific entity and attribute (listing D.123).
The references are created using the GUIDs of the specific entity or attribute to make sure
that double naming will not reference the wrong attribute. Unfortunately, this cannot be
specified in the grammar.
The original grammar for the with-clause is similar to the proposed grammar. The only
difference lies in the object variable that is not defined in the original grammar for the
property kind formulation.
Deduced from the examples of exiting ARS, we extended the property kind formulation
to have the ‘some DAY’ and other property variable references in the grammar. The
word ‘some’ refers to the reference-property type between two entities, with the attribute
referencing the property type alias. The property kind formulation ‘the son of Person
is some PERSON’, or rather ‘the [son] of [person] is some [person]’, is equivalent to the
self-referencing property type on Person being called ‘son’ as visualised in fig. 4.31.

Figure 4.31: The meaning of some

124

4.5.3.13 Assess Part Specification

The original grammar for the assess part uses the <no specific> condition where the
clause cannot be specified in terms of a list of fact kind formulations. The proposed
grammar uses the same specifications for the assess-part as the original grammar. This
is listed in B.11 and C.8.

4.5.3.14 Fact Kind Formulation

The original grammar for the fact kind formulation (listing B.12) makes a distinction
between property, attribute and product kind formulations. The proposed grammar uses
the same specifications for the fact kind formulation (listing C.15) except for the product
kind formulation. This formulation is not used in practice to describe any references.

4.5.3.15 Attribute Kind Formulation

The original grammar for the attribute kind formulation (listing B.13) has three conditions
that can be used. Some examples do not conform to these conditions and therefore cannot
be expressed with the original grammar.
The proposed grammar uses more complete set of comparison possibilities. The ‘and’ and
‘or’ operators, that are used in the examples are added. Also the ‘in’ comparator is added
(listing C.16). The original attribute variable was insufficiently specified and is replaced
by the property variable that can specify an attribute of an entity in a set of values.

4.5.3.16 Response Part

In the studied examples, the cardinality of the property types between two TPSKs were
used. This specification has been added to the proposed grammar. Also, the proposed
grammar has the ability to specify multiple actions in the then and in the else part of
the action rule response. Both original and proposed grammar are listed in B.14 and C.9,
respectively.

4.5.3.17 Intentions

Intentions are the verbalisations of the GSK steps for the TPSK. The original grammar
contains the past and perfect tense verbalisations (listing B.15). In the proposed grammar
we added the abbreviations of those intentions to accommodate for the use of the TPSK
in the when clause (listing C.17).

4.5.3.18 Entity Variables

The entity variable in the original syntax (listing B.5) has been superseded by the general
naming of variables (listing C.18). The naming of the variables and the connection to
other parts of the model can be deducted.

125

4.6 Implementation Metamodels

During practical application of DEMO models, we came to the conclusion that some
additional diagrams were needed to fully represent the model.
The original DEMO metamodel did not allow for models to “grow” from the different
aspect models, in the sense that the consistency rules would require the model to always
be complete as a whole (so, including all aspect models). Therefore adjustments to the
metamodel needed to be made to allow for such flexibility, while still enforcing (at the
end of the modelling process) the overall consistency.

Figure 4.32: CM-AM flow

In practice, organisation models that resulted from the OER analysis often raised ques-
tions regarding the origins of the included transaction kinds. More specifically, a cross-
reference from the elements in the organisation model to the original OER analysis
was missing. To support this kind of cross-reference, we have added the interview and
interview-line concept to the metamodel. By registering every aspect of the OER ana-
lysis as a connection from the interview-line to the elements modelled from that line
information we have created a cross-reference from the source to the final model.
Another finding is that in practice, there was a need for DEMO models to be related
to their existing / planned implementation. For instance, a “serving” connector was
introduced that could be used to connect e.g. DEMO model elements to e.g. application
components in the ArchiMate’s Application layer. With this connector, one can, for
instance, point to application components that implement the transaction kind or TPSK.
Another example of the need to be able to include more of the implementation context
involves the introduction of an actor (type) that aggregate actor roles. Such actor types
correspond to job functions and, therefore, combine all competences of the actor roles
that are aggregated. This can be used for HR implementation information.

126

4.7 Property Types

Tables below describe all allowed Property Types between the objects of the metamodel
(4.2), as well as all Property Types and elements that are allowed to be used in diagrams
(4.3).

To → ETK ATK EAR CAR ET CET TPSK AR
From ↓
ETK - c e ce - - - -
ATK - - - - - - - -
EAR ia a - c - - - -
CAR ia a - c - - - -
ET o - - - xsrg - - -
CET o - - - - - - -
TPSK c - - - - - iy tlwh
AR - - - - W - - -

Table 4.2: Element Property Types

127

Diagram → OCD PSD TPD OFD ARD RHD AFD ..
Entity Types ↓
ETK X X X X - - - -
ATK X - - - - - - -
EAR X X - - - X - -
CAR X X - - - X - -
ET - - - X - - - -
CET - - - X - - - -
TPSK - X X - X - - -
AR - - - - X - - -
Property Types ↓
[c] contained in - - - - - X - -
[o] concerns - - - X - - - -
[i] initiator X X - - - - - -
[e] executor X - - - - - - -
[a] access to bank X - - - - - - -
[s] specialisation - - - X - - - -
[r] aggregation - - - X - - - -
[g] generalisation - - - X - - - -
[t] then - - - - X - - -
[l] else - - - - X - - -
[w] while - - - - X - - -
[h] when - - - - X - - -
[W] with - - - - X - - -
[x] excludes - - - X - - - -
[y] wait - X - - - - - -
[f] role of - - - - - - X -

Table 4.3: Diagram Entity and Property Types

4.8 Model Extensions

Because the DEMO notation is never finished and the links to other notations will require
multiple adjustments, the metamodel needs to remain extendable. This topic is further
elaborated upon in the ExtendedInfo part and can be found in listing D.124.

128

Chapter 5

Tool Implementation

For this research, we selected a tool to implement the DEMO metamodel. In this chapter,
we outline the tool selection process and the initial creation of the various metamodels
in the tool. In the closing section of this chapter, we will further describe the verification
mechanism that was built on top of the metamodel.

5.1 Tool Selection

In the search for an tool to create DEMO models we have looked for building from scratch,
using an existing tool, or extending a tool. At that time, building from scratch was not
feasible and we have only looked at the other two options. Therefore, selecting a tool from
a set of available tools needs guidance. A tool can have a user preference based on look and
feel, on creator affinity, or just on the name. We needed to define some objective criteria
that guided us in choosing the right tool. In this section, we will describe the literature
we used and our outlined arguments for choosing this particular set of requirements.

5.1.1 Requirements for Tool Selection

For our research, we selected an enterprise-grade tool (framework) to implement the
DEMO metamodel based on the criteria as listed below. We do not pretend that this
set of criteria is complete or adequate for all users of the final modelling tool. However,
for the purposes of our research, we deemed these to be appropriate. We used this set
of criteria to reduce the selection of potential tools and to finally come up with a usable
tool, fulfilling the most relevant objective criteria. Additionally, an earlier version of these
criteria, as reported in [6], has also already been used by other researchers [64].
In the selection of the tool (framework), the following overall criteria were used:

1. The tool must be able to support the executability of the final model;
2. The tool must be able to support all the ways of modelling and thinking as described

in the DEMO methodology;
3. The tool must be able to support the option to interchange with VISI (this originally

stands for ‘Voorwaarden scheppen voor de Invoering van Standaardisatie ICT in de
bouw’) models when applicable;

129

4. The tool must be able to check the logical, internal correctness of the model;
5. The tool must be able to have an efficient storage of the model;
6. The tool must be able to support the validation of a model with relevant stakehold-

ers.
From this list, we then defined the requirements for the tool.

5.1.1.1 Defining Requirements

Modelling an organisation with DEMO requires the use of all four DEMO aspect models.
This results in the first requirement that is defined as:

Requirement 1 The tool must be able to support the creation of all four aspect models
of DEMO.

The specification language of DEMO [1] states the high-level ontological-metamodel that
needs to be supported, as well as the visual representations of the different models and
diagrams. Although the DEMOSL is not complete (yet), as is shown and elaborated on
in Chapter 3, it certainly outlines the minimal descriptions and guidelines to visualise
DEMO diagrams and defines the minimum set of information to create a ontological-
metamodel in order to describe the internal relationships of a DEMO model. To ensure
compliance with these specifications, our second requirement states:

Requirement 2 The tool must be fully compliant with the DEMO metamodel, as specified
in DEMOSL.

One of the research topics in the field of DEMO is the potential to integration and
combination of other modelling methods and notations [51, 63, 79, 90]. When we follow
the recommendations outlined in these publications, the best way for a tool to support the
combination of modelling methods is to have a tool that also supports various modelling
methods and notations. This has such a practical benefit, apart from supporting further
research, that we added it as a third requirement:

Requirement 3 The tool must be able to support multiple modelling methods and nota-
tions.

When going through DEMO models in published scientific papers, we found incomplete-
ness, structural incorrectness, and syntactic failures in the various models [79, 65, 91].
To solve this problem, the DEMO model should be verified against the specification lan-
guage. To conduct such a verification, requires a considerable effort as it involves a large
body of correctness rules. For example, the Xemod tool (see Section 5.1.2) already has 23
business rules published and implemented for the CM1. In Section 5.3, we will elaborate
further on all verification rules that are needed to verify the whole model. When the
task of verification takes more time than the modelling itself, we can also accidentally
introduce defects in the model. To compensate for the effort, the tool should be able to
automate as much verification during modelling as possible. This leads us to the fourth
requirement:

1[92] - J. Vos. Business modeling software focused on DEMO; http://wiki.xemod.eu. 2011. url:
http://wiki.xemod.eu

130

Requirement 4 The tool must allow for automated model verification against the DEMO
metamodel, DEMOSL.

The DEMO methodology itself does not prescribe the modelling order of the DEMO
model such that it is the only correct order of modelling [25]. The OER method only
determines the components that need to be modelled and how these modelled components
need to be connected. As a consequence, the model could not be built solely on using
req. 4. Therefore, we need an extra requirement for the tool that allows for variation in
modelling order:

Requirement 5 The tool must allow for model verification for any modelling order in
which a model is created.

Although four metamodels were specified in the original DEMOSL, in Chapter 3 we
created the integration of these four metamodels into a single, integral, complete
metamodel. This single metamodel allows for easy subsequent model verification. Us-
ing this metamodel as base for a single repository allows the reuse of components of the
model in other aspect models. We found the usage of a single metamodel and repository
to be useful, and therefore, we state the sixth requirement:

Requirement 6 The tool must be able to keep produced models in an integral metamodel
and repository.

Modelling tools have been around for several decades, and still, there is no common
modelling tool available that could apply for the de facto standard for DEMO. The tools
that are used for modelling DEMO seem to be missing some elementary aspects or are
not capable of modelling all the different aspect models. In Section 5.1, we have looked
at a selection of currently used tools. Although there might be more tools that are in
use or that are capable to model organisations, we limited our research to the described
set of potential tools. We conjecture that existing tools are not optimal for DEMO in
the standard available version. Though we have covered the aspect models of DEMO
in req. 1, more facets of this methodology are important. Therefore, we introduce our
seventh, requirement:

Requirement 7 The tool must allow for extending the modelling tool capabilities when
this is deemed necessary for full support of DEMO.

A tool that can capture all DEMO related models and tables, and possibly even other
related modelling techniques, may sound ideal. However, such a tool also needs to be
viable in an enterprise context, which means that the enterprise-grade criteria as discussed
in section 2.8 become crucial.
Therefore, finally, considering the need to support the use of DEMO in larger enterprises,
a selected tool needs to be enterprise-grade:

Requirement 8 The tool (framework), and its provider, must be enterprise-grade (see
section 2.8).

131

Finally, though usability of tools is an important subject, we have not included it in our
considerations. On the one hand, usability from a user-interface point of view is highly
subjective. Where one person might like mobile devices based on Apple interfaces, another
person might like Android interfaces, while both do the job just a bit different. On the
other hand, in the context of modelling tools, usability is also strongly influenced by the
notation [41] as used in a modelling language / method. Since we have taken DEMO
as-is as our starting point, it would not be relevant (within our research) to consider the
usability of the DEMO.

5.1.1.2 Additional Requirements

In the previous section, we discussed and stated the requirements that will define the
suitability of the tool for DEMO modelling. Next to these requirements, some non-
scientific requests come into mind when selecting a suitable tool. For the sake of overall
completeness, we will mention them and list them as additional requirements. We will,
however, not use them in our requirement validation process.
For any methodology to become widely adopted by professionals in the field, supporting
modelling tools are of paramount importance. Therefore, selecting a tool that already
has a profound market penetration is better for the purpose of wide adoption. The soft
requirement, therefore, is:

Requirement 9 The tool must have a substantial market penetration.

Substantial market penetration of a tool is important to create a wide adoption, but new
consultants and scientists who use a tool are of course educated first. When a tool is
available in the early stages of the careers of scientists or consultants the use of the tool
in their professional life becomes more likely when the tool is also proven to be helpful
for them. This is expressed as:

Requirement 10 The tool must be available for educational purposes at a low cost.

Next to these requirements, the DEMO metamodels need to be “built” on top of the MU
theory (section 2.3), which is a foundational part of the DEMO methodology [9] and was
known in a previous iteration of DEMO as Factual Knowledge [25].

5.1.2 Current Tools on the Market

In the search for modelling tools that support modelling in DEMO and that comply with
all the requirements as listed above, we have been able to find ten potential candid-
ates. This initial selection was based on (1) existing experiences with tools within the
community of DEMO practitioners, (2) potential or shown openness of the tool (frame-
work) and / or tool vendor to accommodate DEMO models. The resulting ten candidates
were thoroughly studied and checked against the specified requirements as discussed in
section 5.1.1.
We do not pretend to have conducted an exhaustive search for, and evaluation of, all
available tools on the market. As discussed in the introduction, the lack of tooling was

132

found to be a hampering factor in the further uptake of the DEMO method. A phe-
nomenon, which we also observed to be the case in the first years in the existence of the
ArchiMate [42] standard. Basically, a chicken-and-egg problem. For strategic reasons, we
therefore primarily focused on finding a suitable tool among the enterprise (architecture)
modelling tools that were already known-to, and/or used-by, members of the community
of existing, and potential, DEMO users. The assumption underlying this strategy is that
selecting an already used, or at least known, tool would also result in a quicker accept-
ance of a DEMO tool within the (initial) target audience. The latter will then, hopefully,
also trigger additional (large) tool vendors to follow the example and include support for
DEMO in their tool/framework as well. This is a pattern which we think to also have
observed in the uptake of the ArchiMate standard and associated tooling.
As such, building a tool from scratch was also not considered to be a desirable option,
also when taking the enterprise-grade requirements into consideration. In alphabetical
order, we present the results of our analysis below.

Figure 5.1: Connexio Figure 5.2: DemoWorld

Figure 5.3: ModelWorld Figure 5.4: Xemod

ARIS by Software AG2 is a business modelling tool. With the use of the ArchiMate
modelling possibilities (req. 3), the set of objects within this tool has been extended with
a transaction and actor role to allow for OCD modelling (req. 1). This tool is available
and commonly used equivalent to (req. 9). This tool is free of charge for 6 months to
make it suitable for educational purposes (req. 10).

2[93] - Software AG. ARIS http://www2.softwareag.com/

133

CaseWise Modeler by CaseWise is a business modelling tool that collects and docu-
ments the way in which organisations work. This tool has an Application Programming
Interface (API) and can, therefore, be extended further. Information about the extent
of the API is not available3. This tool can provide multiple diagrams, e.g. the Entity
Relation Diagram (ERD), Calendar, and Process simulation equivalent to (req. 3). The
diagram features of this tool can be used to create DEMO diagrams except for the AM,
which is too complex for this tool (req. 1). The repository can contain standard and
extended objects for one model (req. 6). Regretfully, no verification business rules can be
added to the tool. Finally, the tool is available and commonly used (req. 9).

Connexio Knowledge System by Business Fundamentals4 documents the represent-
ation of the current organisation implementation using the OCD diagram (req. 1). It also
stores ARS and WISs to enable people to manage and understand their job knowledge. It
does not support all aspect models of DEMO. It is proprietary software and for internal
use only.

DemoWorld by ForMetis5 is an online modelling tool for DEMO processes (req. 1). It
does verify some business rules of the OCD (req. 5) and also allows for OCD modelling
and process animation. The tool cannot model all aspect models and has no built-in
verification options. It is available for commercial use. Students pay e 50 per 6 months,
professors are able to get free usage for 6 months.

EC-Mod by Delta Change Consultants can visualise organisational flaws in the trans-
action kinds and actor roles, using a modified OCD (req. 1). This modified OCD shows
organisation flaws and can also be verified (req. 4). It was presented in 2016 but is for
internal use only.

Sparx Enterprise Architect (SEA) by Sparx is an analysis and design tool6 for Uni-
fied Modelling Language (UML), SysML, BPMN, and several other modelling techniques
(equivalent to req. 3). It covers the process from the analysis of requirements gathering
through to model design, building, testing, and maintenance. Furthermore, it allows for
the creation of implementation metamodels to model one’s objects, connections and busi-
ness rules (reqs. 5 and 7). The repository stores in this tool all objects to enable reuse
on multiple diagrams (req. 6). It is available and commonly used (req. 9). The tool has
a one-time fee of e 60 for individual academic licenses (req. 10).

3[94] - CaseWise. The Casewise Suite and Casewise Modeler; http://www.casewise.com/product/modeler/.
2016. url: http://www.casewise.com/product/modeler/

4[95] - T. Severien. Business Fundamentals - Verbeteren vanuit de essentie;
http://www.businessfundamentals.nl/. 2016. url: http://www.businessfundamentals.nl/

5[96] - Formetis. Online modeling tool for process design and animation; https://www.demoworld.nl/.
2017. url: https://www.demoworld.nl/Portal/Home

6[97] - Sparx. Enterprise Architect https://www.sparxsystems.eu/start/home/. 2017. url: https:

//www.sparxsystems.eu/start/home/

134

ModelWorld by EssMod7 can support ArchiMate, DEMO, BPMN, UML, and
Mockups (req. 3). The repository contains all models (req. 6). It can visualise three
aspect diagrams of DEMO (req. 1), but these can not be verified using business rules.
Though the model can be simulated, no further extensions can be written on this tool.
The tool has been free of charge (req. 10). Unfortunately, this tool is currently no longer
available.

Open Modeling by Santbrink is a multimodel tool that supports Flowcharts, Integ-
ration Definition (IDEF) scheme, Application landscape, DEMO, ArchiMate, Use Case
diagram, Component diagram, State diagram, ERD, Data Flow Diagram (DFD), and
Screen sequence diagram.

uRequire Studio by uSoft is a requirement management tool8 that has the option
to add OCD (req. 1). The requirements repository cannot store DEMO models. As a
consequence, diagrams are stored and only connected to the requirement definitions by
object description. No other aspect diagrams of DEMO are available. The tool also
supports BPMN diagrams (req. 3) and is available for commercial use.

Visio by Microsoft is a drawing aid with templates for DEMO resembling the graphical
representation (req. 1). Multiple diagram types can be made in a single file (req. 3). Visio
does not have a repository of objects. Diagram verification is possible using programming
in Visual Basic for Applications (VBA) (req. 7), but diagram objects cannot easily be
related. The tool is available and commonly used (req. 9) for modelling. A Visio licence
for students is available for e 50 (req. 10).

Xemod by Mprise (fig. 5.4) is a tool that has the ability to integral model three DEMO
aspect diagrams within a single Scope of Interest per project file9 (req. 1), which might
result in an inconsistency between multiple scopes of interests, scattered in models. Busi-
ness rules can be used to verify the model on consistency between several elements (reqs. 4
and 5). Furthermore, the tool can show the OCD, PM, and FM as diagrams and lists
(req. 6). Unfortunately, this tool is no longer available on the market.

7[98] - Lambertus Johannes Hommes. ModelWorld; http://ModelWorld.nl. 2015
8[99] - uSoft. URequire Studio; http://www.usoft.com/software/urequire-studio. 2016. url: http:

//www.usoft.com/software/urequire-studio
9[92] - J. Vos. Business modeling software focused on DEMO; http://wiki.xemod.eu. 2011. url:

http://wiki.xemod.eu

135

D
E

M
O

(1
)

D
E

M
O

S
L

(2
)

M
u
lt

i-
m

o
d
el

()
3)

V
er

ifi
ab

le
(4

)

B
u
si

n
es

s
R

u
le

s(
5)

R
ep

os
it

or
y
(6

)

E
x
te

n
d
ab

le
(7

)

E
n
te

rp
ri

se
-g

ra
d
e(

8)

T
ot

al
sc

or
e

C
lo

u
d
/L

o
ca

l

S
im

u
la

ti
on

A
va

il
ab

le

ARIS C--- – X – – – – X 3 L – X
CaseWise Modeler CP-F – X – – X – X 4 L – X
Connexio Knowledge
System

C--- – – – – – – – 1 L – -

DemoWorld C--- – – X X – – – 3 C X X
EC-Mod CP-- – – X – – – 2 L – -
SEA ---- – X – X X X X 5 L – X
ModelWorld CP-F – – – X X – – 3 C X -
uRequire Studio C--- – – – – – – – 1 C – X
Visio C--F – X – – – X – 3 L – X
Xemod CP-F – – X X X – – 4 L – –

Legend for DEMO coverage: C = Construction Model, P = Process Model, A = Action
Model, and F = Fact Model.

Total score = sum of ticks, plus 1 if at least the Construction Models are supported

Table 5.1: Summary of the findings on available tooling software

Table 5.1 provides a summary of our findings on available tooling software. As can be
seen from the table, we conclude that DEMOSL has not been completely implemented in
any tool available yet. More specifically, we conclude that no current tool can integrally
capture all models and diagrams needed for the methodology as a whole. In principle,
this would have brought us to an impasse in the sense of tool builders waiting for a further
increase of the use of DEMO, while potential DEMO users wait for enterprise-grade tool
support. To move beyond this impasse, we decided to extend a commonly used framework.
In line with this, the scores suggested that SEA would be the best candidate to fulfil the
requirements, by extending the tool with DEMO. SEA is broadly used, supports multiple
models, can apply business rules, has a repository, is extendable, and is already used for
architecture modelling. More specifically, the SEA platform allows for the implementation
of new/additional modelling languages by means of C# based extensions in combination
with “shape scripts” for the graphical shapes. Therefore, this tool framework was chosen
to be configured with the DEMOSL metamodel and implement the DEMO methodology
as precisely as possible.

136

5.2 Creating the Metamodel in SEA

The modelling tool SEA allows for extending the basic UML model with the extender’s
concepts. These extended concepts are called profiles. In the next sections we will explain
how we have built the DEMO metamodel in and for SEA. During our research, we have
used the SEA tool version 13.0.1310 up to 14.1.1429.

5.2.1 UML Typeset

The modelling tool SEA has a built-in metamodel base consisting of UML data types.
By creating a new so-called profile, these data types can be extended with one’s own
“extended concepts”. Many metamodels in the SEA modelling tool are using these UML
data types as a base for their own model (e.g. ArchiMate, BPMN). Therefore, the used
UML types for our DEMO metamodel in SEA are Class for entity types and Association
for the relations between entity types.

137

Figure 5.5: OCD profile, standard visualised by SEA as class extensions

5.2.2 Extending Types

To extend a model in SEA, one needs to define the model in three distinct profile types:
the stereotype �profile�, the �toolbox profile� and the �diagram profile�. In this
section, we will only discuss the extending of the SEA metamodel for the aspect model
CM and aspect diagram OCD.

5.2.3 Stereotype Profile

To be able to model the stereotype �profile� of the CM, we needed to create an imple-
mentation of the DEMOSL concepts into the existing SEA modelling options. SEA uses
a�stereotype� for each potentially visible object. Therefore, the ontological metamodel
of the CM needs to be reduced to visible entity types. In the metamodel of the Construc-
tion Model (CM) of DEMOSL 3.7, as shown in fig. 3.1, we can see that the ontological

138

metamodel contains six entity types. The entity type IFK or EVENT TYPE is the link
between the CM and the FM. It is not displayed on the OCD and can be left out of the
SEA metamodel for the CM, just as the FACT KIND. Earlier, we already mentioned the
missing Scope of Interest Boundary (SIB) in the CM metamodel. We decided to use the
CAR concept instead and remove the IFK which reduced the number of �stereotype�s
concerning the CM to four entity types, as seen in fig. 5.5.
We extended the �meta-class� Class for the EAR, CAR, ATK, and TK elements and
added properties, attributes, and shape scripts (as explained in section 5.2.6) to the four
stereotypes. Each stereotype has a ‘meta-type’ property showing the default name of the
instantiated model element. The how and why of other properties of each stereotype are
available on request and will not be further discussed in this section. We also extended
the �meta-class� Association to create connectors between the elements.
We defined the name of the instantiations of the discussed �stereotype� in order to
distinguish the metamodel, model, and visualisation.

Definition 1 An Element is an instantiated Class extension �stereotype� in the re-
pository.

Definition 2 A Diagram Element is a Link to an Element, and visualisation placed on
a diagram.

Definition 3 A Connector is an instantiated Association extension �stereotype� in
the repository.

Definition 4 A Diagram Connector is a Link to a Connector and visualises the connec-
tion between two Diagram Elements on a Diagram.

5.2.4 Diagram Profile

Aside from the �stereotype�s, as defined in section 5.2.3, we needed to define the dia-
grams where element links reside on (see fig. 5.8). For the diagram OCD we have extended
the �meta-class� Diagram Logical into the �stereotype� ‘DEMO OCD’ and used the
‘diagramID’ to identify the specific diagram when instantiated. The associated toolbox
to create elements will be discussed in section 5.2.5.

Definition 5 A Diagram is an instantiated Diagram Logical �stereotype� in the re-
pository.

The diagrams �stereotype� will function as a unique identification of the diagram type
OCD. Not only does this allow for verification of the element links on the diagram in a
later stage, but it can also be used for selecting the right visualisation of the element link
on the diagram, as diagrams with element links are only a viewpoint to the model as it
should be. We needed to define all diagrams of DEMO in the �diagram profile�.

139

5.2.5 Toolbox Profile

In SEA, every diagram can be equipped with a toolbox with elements (see fig. 5.6) that
displays the new elements and connectors which are meant to be used for that diagram.
The elements can be dragged and dropped into the diagram and become new elements in
the repository as well as (visual) element links on the diagram. The visualised connectors
(called “links” in the associated toolbox) can be selected and the connector link can be
dragged and dropped between two element links. This creates the connector link and
consequently the connector between elements. To model these options for the diagram,
the �stereotype� of the diagram needed to be extended from the ToolboxPage element
(see fig. 5.7). The toolbox standard only offers the available elements and connectors
that are valid for the selected diagram in a list type visualisation. It does not restrict the
elements that can be used on the specific diagram. These restrictions are implemented
in another part of the SEA model. Available connectors can be suggested to the user
for specific diagrams using Quick Links. At this moment in our research, we did not yet
implement the Quick Links into the tool.

Figure 5.6: SEA OCD toolbox Figure 5.7: toolbox profile OCD

140

Figure 5.8: profile diagram OCD Figure 5.9: shape script OCD TK

5.2.6 Shape Scripts

SEA allows for each element link to be represented by a graphical shape. The creation of
that shape is supported by the programming language shape script. Shape script has a
syntax similar to C but has a limited set of available commands and limited functionality.
The example script to draw a transaction kind shape is shown in fig. 5.9.
Within the shape scripts, it is possible to use some of the element properties or the
containing diagram properties. These properties can be used in simple logic in order to
determine the required shape to be drawn on the diagram. Limitations arise when shapes
have different representations on different diagrams of the same type. When choosing the
visualisation of a CAR, the programming features are too limited to either draw it as an
internal rectangle and use it as Scope of Interest (SoI) or draw it as a grey-filled external
rectangle automatically. The programming features do not allow for a context check of
the visualisation. Therefore, these specific visual properties of the elements within SEA
must be set manually by the user at the moment resulting in all instances on all equal
diagram types having the same appearance.

5.3 Verification Model

The verification of all data rules, mathematical rules, and other model restrictions need
to be automated in order to be useful to the DEMO modeller. In this section we describe
a few of these rules. A more complete set of verification rules can be found in appendix F.

5.3.1 Model Verification

We implemented the verification of the DEMO model for multiple reasons. First of all,
the elements and connections can be added to the SEA repository by third parties using
the API. The use of this API entry path will bypass the necessary checking of the business
rules because only User Interface (UI) events are available to be checked by the add-on in

141

SEA. The presence of a verification engine allows DEMO modellers to create valid models.
Secondly, the DEMO model may be entered to the best ability of the modeller with all
information available but is still incomplete. Without proper verification, the verification
engine emphasises the gaps identified and allows for corrective measures. Lastly, the SEA
tool has its limitations on keeping the diagrams within the specifications of DEMOSL
upfront. Verification in the tool is checked afterwards. Therefore, the diagrams can also
be corrected after new elements have been entered into the DEMO model.

5.3.2 Business Rules

The SEA tool has a flexible model extension feature but does not allow for a complete
set of configurable business rules. Although some restrictions on inter-dependency can
be made using e.g. the Quick Link feature, most restrictions and checks have to be made
using the API. This API allows for checking business rules at UI events such as menu
click, element creation (see fig. 5.10), deletion, and drag and drop onto a diagram canvas.
We have used this API to implement business rules on relevant events.

public bool EA_OnPostNewElement(Repository repository,
EventProperties info)

{
//Get element from the info
int elementId = Convert.ToInt32(info.Get(0).Value);
Element element =
_repository.GetElementByID(elementId);

...
Logger.Log("Created element {0}", ...);
return false;

}

Figure 5.10: New Element Handling C#

5.3.3 Test Model

The test DEMO model that we used to verify the DEMOSL within the SEA tool is the
model that is described below in figs. 5.11 to 5.13.
The OCD contains these actor roles and transaction kinds:

Figure 5.11: OCD Test model

142

Figure 5.12: PSD Test model Figure 5.13: ARD Test model

5.3.4 Construction Model

The business rules that we have implemented for the OCD are:
1. Elementary actor roles may only be the executor of a single elementary transaction

kind.
2. Every pair of actor role and transaction kind can only have a single connection of

the initiator, executor, or bank access type.
3. On an OCD diagram, only ATK, TK, EAR, and CAR elements can be added.

All equations have been programmed into the verification metamodel (see fig. 5.15 part
6). These examples show how the program was built in order to comply with the DEMO

143

verification metamodel.

ActorRole(x) =⇒ ElementaryActorRole(x)

Y CompositeActorRole(x)
(E.5 ref) AR

actorrole = new List<BaseKind>();

actorrole.AddRange(m.ElementaryActorRoles);

actorrole.AddRange(m.CompositeActorRoles);

Listing 5.1: Actor role, joining composite and elementary in a list for verification (see
eq. E.5)

All equation references we have programmed for the CM can be found in appendix F.1.
The propositions of a specific type are implicitly programmed in the verification
metamodel to make sure all List<>s are of the right type. The equation explicitly written
in eq. E.5 is implicitly covered by building the lists as shown in listing F.6. The construc-
tion model is built of actor roles and transaction kinds. Equation E.2 is programmed as
shown in listing F.7. The mutual exclusion equation of a TK (eq. E.6) and AR (eq. E.5)
can be checked by the pieces of the program as outlined in listing F.8 and listing F.9,
respectively.
We have split the verification of eq. E.7 and eq. E.8 in two separate verification rules. This
is different from the logical representation but is compliant to the relational formulations
of the XSD as outlined in listing D.79 and listing D.80, respectively.

5.3.5 Action Model

We needed to verify the action model with the logical metamodel and the exchange
metamodel. Therefore, we have built five program parts (see fig. 5.14 for visualisation):

1. A verification metamodel programmed in code in the memory model (closely resem-
bling the exchange model).
This verification metamodel is restricted to the action rule name, the TK and TPSK
on which the action rule applies, the entities involved in the with clause and, finally,
the relationships between the entities involved. For testing purposes, we have used
a simplified example.

2. A verbalisation generator has been programmed to create the ARS from the memory
model.
This generator takes the memory structure tree and follows the structure depth-first
towards the end of the action rule, thereby writing the language. The tree navigation
is in compliance with the action rule grammar. More structures are allowed in the
memory model than in the grammar due to the inherent strictness of the memory
model.

3. A model converter has been programmed to split the connected CM, PM, and FM
concepts needed for the AM.

144

Although it would be more efficient to fetch the information directly from the ori-
ginal DEMO model, the assumed requirement of independence of the grammar
module makes it necessary to create a new lookup structure for the model element.

4. We programmed an interpreter on top of the lexer-parser-listener of the created
grammar that ultimately produces the exchange code.
After lexing and parsing the input string, we are able to navigate through a tree
which, again, follows the grammar structure. Now, instead of the language, we can
fill the XML nodes into the XSD structure. Afterwards the XML nodes can be
serialised in order to to create an XML string.

5. A direct conversion from the memory model to the exchange model.
Serialisation of the memory model can also be done via the XSD structure directly.
This step creates an XML from the memory model.

At the end of the path, we have two XML files that need to be identical for the AM part.
The AM must represent the same information in all formats.

Figure 5.14: ARS Test path

Both XML files need to have the same content, and, therefore, no information loss can
be detected during the conversion of the memory structure into the ARS language. As
such, the information in the ARS has sufficient power to specify an action rule that can
also be modelled in the memory model.

5.4 Result

Figure 5.15 shows the tool “in action”, as well as some details of the tool’s implementation
on the SEA platform. In the latter, we see (numbers referring to the respective windows as
displayed in the figure) how SEA provides a set of base classes (1) for elements, connectors,
diagrams, and toolboxes. Each DEMO model element involves an extension of one of
the base classes of SEA (2), while also having custom properties based on the DEMO
metamodel (3). To enable various visualisations for different aspects, SEA provides simple
scripts that enable the drawing of shapes (4). SEA provides interface “hooks”, that are
triggered when editing models in the graphical user interface, that can be used by add-on
applications to provide functionality that is not available in SEA (5). The verification of
DEMO models has been implemented in C# using these “hooks” (6).

145

Figure 5.15: Tool in action, and its implementation

146

Part II

Implementing the Metamodel

147

Chapter 6

Practice: Model Iterations

Part of this chapter has been previously published in the paper for the EEWC 2019
conference[2].

6.1 Model Iterations

Over the past two years, we have created business models for five different organisations.
The creation and presentation of these business models are described as separate iterations
which vary in complexity, modelling effort, and modelling purposes. Even though the
contexts among these models vary, the descriptions all start with the context of the
particular iteration, the way of working during creation of the models, their presentation,
the iteration adaptation during the modelling and discussions of these models. DEMO
is a non-domain specific methodology that allows us to use the iterations throughout the
various domains while the stakeholder types remain stable.
The iterations, which are labelled A-E, have been created in five different companies in the
Netherlands. Iteration A, D, and E were used at logistic wholesale companies. Iteration B
was created at a small property management company, whereas iteration C was created
at a small call centre. We presented the business models to several types of stakeholders,
which we distinguished in the following way:

� A developer builds a piece of software and uses models that follow the functional
intention of that specific model(s).

� An operational employee is a business user that uses the models to reflect on his or
her work.

� A director is a manager who is responsible for the efficient and effective operation
of the organisation itself. One uses the models to get an (executive) overview.

� A C-level director (e.g. CEO, CFO, CIO...) is a manager who is responsible for
parts of the organisation that a director manages. One uses the models to optimise
one particular aspect of information, processes, or finance.

149

� A project manager is responsible for managing several concurrent and interconnected
projects. One does not use the models directly but needs to understand the concepts
behind them.

� A software vendor is a commercial company with developers. One needs the inform-
ation to verify that the developed software is compliant with the necessary business
functionality.

In each practical environment we encountered, we made improvements to the presentation
of models. Next, we improved the way of working to create those models in order to make
it more complete, based on the information acquired with the previous iteration(s) of the
model. Consequently, every iteration has influenced the creation of the next ones. The
stakeholder types did not change between the iterations. When, upon validation, the
results of the models were not satisfactory, we specified the changes for the next iteration.

6.2 Practice: Medical Whole Sale (MWS)

Case A is a medical wholesale organisation that only needed a construction model and
a fact model of their organisation to be aware of the organisation and communication
structure. We modelled around 49 TKs, 38 EARs, 12 CARs, 17 ETs, 4 ARSs, 0 WISs. We
modelled their organisational structure in DEMO and combined it with the landscape in
ArchiMate. Although only Organisation Construction Diagram (OCD) have been made,
the combination between the OCD of DEMO and the Application Layer Diagram (ALD)
of ArchiMate have been very useful, therefore confirming the need of req. 3 on page 130.
In this case, the connections between DEMO and other notations have been identified.

6.2.1 Introduction Case MWS

The company in iteration A was in the process of rebuilding its automation through
the implementation of a new software system. At the start of the modelling, a Design
and Engineering Methodology for Organisations (DEMO) Construction Model (CM) had
already been built as a representation of the processes throughout the project. However,
the project team responsible for software implementation only focused on functionality.
Moreover, the construction focus of DEMO was not understood by some of the involved
stakeholders. We stepped into the project when it had already been in progress for 18
months. Subsequently, in the next year of the project, we tried to embed the construc-
tional philosophy of DEMO into the project, but we failed to reach the developers and
project leaders while other stakeholders got hold of the concept. Changing the paradigm
of a solution for the various stakeholders is very difficult after the start of a project.
The working methods of the implementation partner of their software system had already
been in place for many years. They included an agile paradigm from a functional point
of view. Moreover, the company assumed that the functional behaviour of the software
system was 80% correct. Therefore, the only remaining task for the developer was to
adjust the functional behaviour to the findings of the user during testing. Although this

150

was not an engineering approach, it could eventually lead to the final product. Aside from
the developers, the program manager was too busy to embrace the DEMO methodology
for the project as there were too many details to take care of. As is often the case[100],
the project eventually grew too big when more people came in to do the hands-on jobs
without a profound backbone structure.

6.2.2 Construction of Case MWS

Since the construction philosophy did not stick, We had changed the Transaction Kind
naming to accommodate more functional names. In this way, the CM became a process-
oriented model that was understood by many people, including the operational employees.
We created the CM based on user input. The model was described at the ontology
level, but it was insufficiently detailed for use during implementation. Therefore, in
the last six months of the project, we extended the CM with the Process Model (PM)
and with Transaction Pattern Diagrams (TPDs). In two-hour interviews with two to
three employees, we captured the information about every step in the process and the
connections between these steps. Besides, we followed the complete transaction pattern
to add all practical situations that could occur.
At the beginning of the testing stage of the project, We issued a request for checking
the completeness of the test scripts. We discovered that the number of tests was not
sufficient to guarantee the robustness of the software system. With a model of over 15
transaction kinds, 5 business rules, and 20 steps per transaction, you would expect around
15 ∗ 5 ∗ 20 = 1500 test scripts. With only 140 tests for user stories that would match at
most 2 process steps per script and overlapping business rules, we roughly estimated that
at least 300 scripts were missing. We used DEMO, and more specifically the TPDs, to
match all test scripts with the Construction Model. Also, we added over 170 test scripts
to the existing scripts that we found in the TPDs. Unfortunately, there was insufficient
time to complete the model using this approach, so we were only able to share partial
results on this subject (see fig. 6.1).

Figure 6.1: Iteration A: OCD with test scripts

151

6.2.3 Operationalization Case MWS

We presented the CM and the TPDs to the users that were part of the operational
business. With the additional explanation, these stakeholders could understand that the
diagrams were a representation of their process. However, in the end, we felt that they did
not grasp the model well enough to increase their understanding of the process. During
a presentation for combined groups, the CM did trigger interdepartmental conversations
about processes and about how information was or was not communicated between those
groups. Moreover, the responsibilities of the department were easily revealed and under-
stood by the stakeholders.
Discussing the models with the testers was more difficult. Testers have a functional view
of user stories, and their focus is not per se on all the steps that can go wrong. Especially
when time pressure increases, their willingness to co-operate with new methods decreases.
Therefore, although we have created many new test situations, we needed more of them
to complete the model and ensure the success of the system. The developers also did not
fully understand the TPDs with test scripts (see fig. 6.2).

Figure 6.2: Iteration A: TPD with test scripts

We want to emphasise that no other models were present at the beginning of this project
in order to be complete. During the project, these models were introduced, causing similar
issues as the DEMO models. Therefore, it is not clear from this iteration alone whether
the representations, the models, or the lack of understanding of the models is the cause
of failing to properly apply DEMO in this project.

6.2.4 Conclusion and Further Research Case MWS

Concluding, our findings in this iteration were:

� Operational employees and developers do not understand the default representations
of the CM and PM.

152

� Using process names for Transaction Kinds can help users understand the process.
Nevertheless, this subverts the CM because the transaction kinds will be regarded
as simple processes or even simple process steps.

� The models must be constructional to be useful in future tasks.

� The models must be sufficiently detailed for the goal of usage. Although this sounds
trivial, methods do not specify the level of detail needed.

� The project must embrace the DEMO methodology to release its full potential. Not
only do people have to start with DEMO, but they also have to maintain this view
throughout the entire project to profit from the benefits of the methodology.

� In the end, the understanding of the software system implementation was dogged
by many issues which might have been prevented if we could used DEMO to its full
potential.

6.3 Practice: Real Estate (RE)

Part of this chapter has been previously published in the paper for the EEWC 2019
conference[2]. Case B is a property management company that needed its processes and
data modelled to be able to choose the right automation for their business. We modelled
around 222 TKs, 191 EARs, 36 CARs, 149 ETs, 0 ARSs, 9 WISs. The complexity, in this
case, was in the implementation. The OCD and OFD were the initial implementation
versions of both the landscape that we modelled in ArchiMate, as well as the application
mapping. The OFD was used for the base of the configuration of the domain application.
The combination of the OFD and implemented entities is a concept that fulfils some
demands and can be expanded. The security model that was needed for the application
could neither be registered in DEMO nor in ArchiMate and needed further attention.

6.3.1 Introduction Case RE

The company in iteration B wanted to start a new software implementation for its property
management system. The choice of an implementation partner for the system had to be
tendered following government regulations. In preparation for this tender registration,
we produced the CM and the Fact Model (FM) of the relevant parts of the organisation.
They were included in the tender request. Fortunately, the Object Fact Diagrams (OFDs)
in the FM were understood, but no participant could fully understand the impact of the
OCDs in the CM. This resulted in a presumptuous attitude towards the gathered business
information because only the models they were used to were understandable to them.

6.3.2 Construction of Case RE

In this iteration, we used the CM to describe the processes of the company; the FM to
describe the data structure, requirements, and responsibilities. The OFD was extended

153

with the implementation data model of the implemented software. By combining the
two models, the theoretical model and the implementation model could be compared (see
fig. 6.3) and the functionality of the implementation evaluated for the proper data struc-
ture. Also, an Actor role Function Diagram (AFD) was produced to show the relationship
between actor roles and organisational functions, which revealed the mismatch in role and
function definitions.

Figure 6.3: Iteration B: OFD with implementation (Dutch model)

Unfortunately, neither the software solution nor the software partner was able to produce
a complete data model of their software upfront. Therefore, the model comparison could
not take place before contracting the supplier. During the project, we found out that
the implementation partner was not able to understand our abstract models. Therefore,
the creation of the final model was a struggle. As a consequence, the data model was
adapted several times during the implementation process to be able to comply with the
requirements.
The execution of DEMO models [39] can be helpful to formalise the workflow within an
organisation. The software solution of the chosen supplier had a workflow engine that
was based on a Petri net implementation. The DEMO process model can be transformed
into a Petri net implementation[101]. Therefore, we assumed that it should be possible
to transform the DEMO process model into the software. Unfortunately, the vendor only
had a proprietary interface to the workflow structure. Therefore, this option could not be
tested even though it might be a very solid way to start workflow implementation.
In this project, we made the first trial with the new concept of security roles. A security
role is the implementation equivalent of the authorization part of the actor role in the
context of Identity Access Management (IAM). It determines the read- or write-relation
with implementation entity kinds. The anticipated usage of security roles is to enable
IAM from a model point of view and to visualise this information (see fig. 6.4). To our
knowledge, no other modelling tool can provide this feature. Because this SRD was made
experimentally, no formal definition was made upfront. Next to security roles, security
functions have been defined (see fig. 6.4 left SF08). These security functions are the em-

154

Figure 6.4: Iteration B: Security Role Diagram (SRD) example (Dutch model)

bodiment of groups of functionality usually described as security groups in Windows. The
N:M relation between security roles and security groups makes the information complex
and complete. Actors can be assigned to security functions to grant the rights to access
data and, consequently, processes.
The interviews we held in this company were recorded. By using these recordings, we
could capture more information from a single session. This information was used as input
for a second session with the interviewee in which we obtained feedback on the model to
help understand their own business from the produced model. This approach enabled us
not only to achieve model completeness but also to determine the level of understanding
of the model by the interviewee.

6.3.3 Operationalization Case RE

The CM of the organisation was presented in a layered set of OCDs and Transaction
Product Tables (TPTs). From the main diagram, the detailed diagrams were accessible
in an interactive visualisation. This first top-down approach was not without challenges:
we had to make the CM understandable to the employees. The drill-down visualisation

155

helped to determine the context, but it was not sufficient enough for the stakeholders to
understand the construction perspective on their processes.
The CM and FM were divided into departments to get a grip on specialised parts of the
model. This proved to increase the enhanced focus on partial models during our interviews
and feedback sessions. The partial model was particularly helpful to the stakeholders
during the feedback sessions. These partial models concerned their own piece of the
enterprise and were comprehensible for these stakeholders.

6.3.4 Conclusion and Further Research Case RE

The findings in this iteration are:

� The software product must be accessible to reverse engineer the product to data and
process models for it to be verified. The software vendor must be flexible towards
changes in the new implementation method.

6.4 Practice: Online Retail (OR)

Case C is a small call centre that needed to choose a process and data matching applic-
ation. We modelled the organisation and their landscape using DEMO (OCD and OFD)
in combination with ArchiMate. We modelled around 58 TKs, 21 EARs, 19 CARs, 32
ETs, 0 ARSs, 55 WISs (see fig. 6.5). By reverse-engineering the software towards DEMO
models we found an 80% match in the process and data model. This was complete enough
to buy the software licenses. Matching implementation and the organisation model is a
part that is not completely covered by the tool in the used version. The metamodel lacked
some connections between the various entity types.

Figure 6.5: Partial CM/OCD case C

156

6.4.1 Introduction Case OR

The Company in iteration C, needed to buy (not to build) a new software program to
support their business. Therefore, we first analysed its business needs.
We built the DEMO model using input from interviews. The interviews were mainly
aimed at obtaining transaction kinds, actor roles, and entity types. The feedback on the
model was obtained directly by creating the OCD and TPT live with the interviewees.
The data model, or FM, was created from other information we obtained during the
interview. This information was more complex. The main issue in this iteration was the
terminology. When the terminology is complex, and the definitions are not clear or not
present, it is difficult to create a correct data model. Therefore, the model was created in
a few iterations. The final model was understood by the operational employees as well as
by the directors.

6.4.2 Operationalization Case OR

The FM was presented to the software vendor in the standard OFD format and was
understood according to the feedback. However, the vendor only had a data model for the
base implementation, including all entity types of the system. This made an explanation
of the model more difficult. Next, the data model was used to extend the model from
a functional perspective, not from a constructional perspective. Moreover, to obtain
the relevant data model was difficult for the software vendor. Also, the implementation
model was too different from a logical data model, which made a direct comparison more
difficult. Finally, the logical OFD representation did not fully match the implementation
model. After refining the differences, we came to an 80% match on the data model, which
indicated that, after detailed analyses, the program could store the information that the
business needed.
The CM, used as a representation of the process, was not understood by the software
vendor. The software vendor had only implemented functionality, divided into software
modules, that described the activities that were performed on the invocation of a menu
option. This functional implementation versus abstract construction mismatch made the
CM less useful for explanation to the software vendor. In conclusion, our findings comply
with those reported in [102].

6.4.3 Conclusion and Further Research Case OR

The findings in this iteration are:

� Data models rely heavily on definitions. Before creating the data model, a list of
definitions has to be made. This action should be added to the methodology.

� The OFD can be useful for comparing the match between a theoretical data model
and an implementation data model when visualised in the same format.

� The OCD is generally not useful to match implemented functionality with organ-
isation building blocks.

157

6.5 Practice: Retail Whole Sale (RWS)

Case D is a logistic wholesale company that was seeking business optimisation. We mainly
used the OCD to gather all products and processes within their organisation. We modelled
around 200 TKs, 168 EARs, 81 CARs, 107 ETs, 0 ARS, 3 WISs. With the help of the
integration of the Disco process mining tool, we gathered information at the main TK
and related that information to cash flow, processing time and material flows. The tool
supported this modelling by combining process mining information, ArchiMate landscape
information and transaction and role information. Business optimisation was found in
the analysis of the connections between the different departments [43].

6.5.1 Introduction Case RWS

The company in iteration D wanted to have a scan of the organisation to assess its ef-
ficiency. Therefore, we did a full scan of the business processes and the validation of
the business data requirements. During this process, we concluded that we needed a
new approach for this iteration. The Organisational Essence Revealing (OER) method of
Design and Engineering Methodology for Organisations (DEMO) shows how to extract
the essence from the implementation by communicating with the people involved. This
is a good method to obtain the aspect models in a DEMO analysis, including the ori-
ginal, infological, and datalogical layers. This also allows for re-modelling the green and
blue layers when needed. The OER method does intentionally not help with extract-
ing the implementation components themselves (e.g. application components, interfaces).
Therefore, we added more models and methods to capture this information.

6.5.2 Construction of Case RWS

In company D, we created an almost-transcription (called ’statement’ that contains the es-
sence of what is said, but not the full literal text) of a recorded interview. This statement
was then used as the basis of our information analysis. The analysis was done using the
following interconnected diagrams: the Organisation Construction Diagram and Trans-
action Product Table for transaction information, the Application Layer Diagram (ALD)
from ArchiMate for application information and interface information, and the Object
Fact Diagram (OFD) for the data model.
The Construction Model (CM) was created using all Transaction Kinds
(TKs) and actor roles revealed from the written statement. Therefore, we
recorded every relation between the identified TKs and the statement text that
originated that TK. These comments were used afterwards to report our findings within
the organisation. In the end, retrieving all comments in the model took a lot of effort.
The multidisciplinary team in this project worked on the same repository, in the same
tool, leading to a consistent model. After adding the separate viewpoints, the connections
between the viewpoints had to be added. This also took a lot of effort because all parties
had to be involved.

158

6.5.3 Operationalization Case RWS

The main stakeholders for this iteration were an operational employee, a director and a C-
level director. The CM was presented and was comprehensive to the operational employee.
The information was clear enough to retrieve unmatched responsibilities that could be
added to the model using the Elementary Construction Flaw (ECF) notation [103]. The
CM presentation on a company and department level was also good for the director
and gave the director insight into ECF issues and interdepartmental communication.
Also, wrongly allocated responsibilities were identified and communicated. For a C-level
director, the CM was not suitable. The mismatch between the knowledge and abstraction
level of the stakeholder and the modeller made communication difficult and reduced the
perceived benefits of the modelling effort. We successfully added the Flowchart (FC)
viewpoint to reflect the initial knowledge and abstraction level of this stakeholder.
This iteration was also the first to use poster format diagrams. We used two types
of posters. First, we created a poster about the relationships between the diagrams
of several modelling standards. This poster showed that the Organisation Construction
Diagram (OCD) has TKs which are decomposed in a Transaction Pattern Diagram (TPD)
where each Transaction Process Step Kind is connected to an Action Rules Diagram
(ARD) to reveal final conditions and attribute type usages. Secondly, we created a CM
poster that had the complete CM. This poster provided insight into the complexity of
the organisation. The diagrams poster (metamodel) was very helpful in explaining the
DEMO methodology and the relationships between all diagrams to C-level stakeholders.
It showed the possibilities and complexity of the modelling environment. The CM poster
itself (model) was less helpful for the C-level stakeholders. However, it helped explain to
directors the relation between the organisation parts which had been revealed and also
revealed the important issues at stake.
The drill-down reporting, as already initiated in iteration B, section 6.2.3, was further
developed. The mental division between functional processes, constructional models,
data or application models and value streams and measurements were added to the drill-
down order. Aspects within a diagram were coloured. Now a multi-dimensional set of
diagrams can represent each view of a stakeholder. This model construct, despite adding
complexity, has a positive impact on the Return On Modeling Effort (ROME)[104]. The
modelling effort for creating all elements from different viewpoints is relatively low when
starting with the creation of the model. The level of understanding of the stakeholders is
worth far more than this initial investment. It might be that some parts of the model will
never be seen by some stakeholders, but the total model is comprehensible to the entire
target audience.

6.5.4 Conclusion and Further Research Case RWS

The findings in this iteration are:

� Each stakeholder needs his/her representation. Although a certain level of abstrac-
tion might be good for engineering purposes, it can also hinder the stakeholder’s
understanding of the complete model.

159

� The order of building the model may be more important than the DEMO course
envisages, and re-evaluating information during the modelling is inefficient.

� Finding information and highlighting information in an existing DEMO model is
not easy. Marking the highlights when the model elements are created is easier.

6.6 Practice: Whole Sale Administration (WSA)

Case E is a logistic wholesale company that lacked insight into their invoicing system.
We modelled around 23 TKs, 20 EARs, 10 CARs, 12 ETs, 0 ARSs, 0 WISs. This
analysis using just the OCD resulted in the insight that the communication was scattered
around the organisation, and the accompanying responsibilities were not well defined.
Implementation of a single actor role was among several subjects. The presentation of
this information needed some improvement in the tool.

6.6.1 Introduction Case WSA

For the company in iteration E, we built a model of a single operational process. While
this process was relatively small, the modelling depth was very high. This modelling
aimed at finding optimisation possibilities.

6.6.2 Construction of Case WSA

Based on the changes in the previous iterations, our approach to creating the model
was different. First, instead of interviewing all stakeholders upfront, the interviews per
stakeholder were directly modelled in thirteen interconnected diagrams before the next
interview started. These diagrams are Business Layer Diagram (BLD), ALD, Technology
Layer Diagram (TLD), FC, OFD, OCD, Process Structure Diagram (PSD), Organisation
Hierarchy Diagram (OHD), Actor role Function Diagram (AFD), Actor role Competence
Diagram (ACD) and some combinations of the mentioned diagrams. The BLD, ALD
and TLD are existing diagrams of ArchiMate, but are now added as default diagrams
in our business model analysis; therefore, expanding the viewpoints of the model. FC is
also a standard notation. The OHD is an extension to the DEMO diagrams showing the
hierarchical ordering of Composite Actor Roles (CARs).
Subsequently, the creation of the integrated model was performed using a breadth-first
approach instead of a depth-first approach. This made the model more consistent. The
depth-first approach, like the OER method, focused on building the aspect models as a
whole. It tries to reveal the transactions and actor roles and their relations. This results in
an OCD and TPT representation. From this point, the OER method advises the modeller
to go through the Process Model (PM), Action Model (AM), and Fact Model (FM) aspect
models to complete the DEMO model. This might lead to some iterations due to missing
information in one or more aspect models. In the breadth-first approach, we analyse
each sentence as they are uttered (or, in our case, as present in recordings of interviews).
After writing down the sentence in an almost-transcript, the sentence then is specialised

160

into all model element types (i.e TK, AR, Application Component etc.) that we want
to model. Each element is entered into the model. Moreover, all elements are connected
to the existing part of the model upon entry thus extending the model in each step.
Using this approach not only saves time compared to the depth-first approach because
the recording is listened to only once, it also improves the model on each iteration. All
model information is complete at each moment in the modelling process.
It has been noted that people tend to think in flows. In the applied approach, which
we called the eXtended Organisational Essence and Revealing (XOER) method, after
notation of the sentence in a statement, we reveal the functional models (e.g. flowcharts,
Business Process Model and Notation (BPMN)) and move from these functional models
towards abstract, constructional models where we write down every step in the analysis.
Moreover, this notation supports the thinking process of the analyst and above all, the
thinking pattern of the user of the model.

6.6.3 Operationalization Case WSA

Due to the multiple models at various abstraction levels, it appeared to be possible to
accommodate all stakeholders. The Flowchart (FC) accommodated the higher and lower
management levels, whereas the OCD and TPD of the respective aspect models helped to
explain and maintain the integrity of the model and the processes. Also, the data model
helped us to reveal missing processes and responsibilities in the master data management
process. Next to the diagrams that are used to transfer information, the way of presenting
these diagrams to the stakeholders also matters. In this iteration, we used three different
methods to share information. First, we shared the raw information which were contained
in the interviews. The interviews were written as a continuous story, which, therefore, fully
represents the information as it was uttered by the interviewee. Next, a document was
produced with the diagrams, diagram descriptions, elements and element description in
a logical implementation-abstraction order. This guided the reader from implementation
towards the abstract blueprint of the organisation. All implementation processes and
construction diagrams were categorised by functional departments. Finally, a clickable
web iteration of the model was produced, allowing the user of the model to drill down
to the level needed for understanding the model. The completeness of the models and
the multiple media used to communicate the diagram increased the understanding of
the model. Further research is needed to rule out other variables that could potentially
influence the stakeholders.

6.6.4 Conclusion and Further Research Case WSA

The findings in this iteration are:

� Multiple viewpoints accommodate multiple stakeholders with the same information.

� The modelling effort of multiple diagrams is not significantly higher than modelling
a single aspect. When more diagrams and aspects are created, they support the
thinking process about the modelling steps. Therefore, only the action needed to

161

create the elements and connections takes up more time. After creation, the extra
modelling supports the reproduction of the thoughts of involved stakeholders.

� The modelling effectiveness towards stakeholders of using multiple viewpoints during
modelling is higher when compared to only modelling the two or three DEMO aspect
models. When multiple stakeholders receive modelling support, they can see the
connection between their thoughts and the DEMO models.

� The modelling integrity and completeness of the models are higher when all the
models are used at the same time. When using a depth-first approach, one might
miss model elements when revisiting a certain process than when handling the entire
issue at once.

� Using the breadth-first approach gives modelling teams a better chance to work
together on the complete model.

6.7 Extending OER

While the Organisational Essence Revealing (OER) method is helpful to reveal the essence
of the organisation, we need to extend the method to reveal more aspects of the current
implementation in a single pass. The current OER method [9, Ch.12] states that (1) the
structure or essence is already present, and (2) the most valuable parts are in the people.
The way to reveal the organisation is to talk with people and/or interpret the documents.
In the last iteration, we have practised this extended method and found promising results.
The extension of OER to multiple models modelling allows for addressing more types of
stakeholders with minimal extra effort.
While the OER method explains to abstract from realisation and implementation the
XOER method does abstract but splits the realisation and implementation from the es-
sence of the organisation. This splitting of the organisation divides the implementation
of procedures and automation and administrative procedures from the essence revealing
two associated worlds. After all, the implementation world is supposed to support the
essential world on various aspects.
The separation of concerns not only applies to the constructional and functional parts of
the organisation, it also applies to the layers, though they are less precise, as defined in
ArchiMate (e.g./ Business, Application, Technology, etc.) and other notations. Taking
into account all these concerns that an organisation wants to reveal, the model can be
created from the same information source.
The use of abstraction applies to the O, I, and D organisation as well as the departmental
configuration and the application components involved. Revealing the elementary actor
roles most often also reveal the functionary types (or job roles) that we have stored in
Actor types in our iterations. Using the already present information in the organisation
about this functional business layer can result in interesting insights about job roles that
have too many responsibilities.
Devising the proper concepts exists on all levels of abstraction. This investment is good
for the organisation at all levels. Finding the right names for products that work for

162

the processes and the facts is one thing, finding names that also work in a glossary
or application environment is another. Concepts work at various departments in the
organisation and need to have a definition in terms of the culture of that department.
Of course we should apply verification by implementation at all parts of the model. We
choose to use the implementation in the model rather than only abstracting from it. Now
we automatically have a partial intrinsic verification that appeals to the organisation
because they know these concepts. Thereby we extend the verification from the usual
suspects of data verification to more concepts of the metamodel.
The last step of validation is important for all concepts in the overall model. For this
validation we not only need the people that fulfil the identified actor roles, but also the
people that support the core processes. Only when the full organisation validates the
model one can make assumptions about the consequences of changes in that organisation.
The nature of DEMO allows for a modular approach in order to reveal the essence of the
organisation. This does not have to change when we add implementation concepts to the
model.

Iteration 0 A B C D E
Viewpoints
(added)

OCD,
PSD,
OFD,
TPT

TPD,
Testscript

AFD,
SRD

Definitions ALD, FC,
ARD

BLD,
TLD,
OHD

Process OER interactive interview written
interview

XOER

Table 6.1: Added aspects in iterations

This multi-method approach leads to the question of how to integrate these viewpoints
into a (single) metamodel. As all viewpoints originate from the same information these
model components are connected. Though not all viewpoints are found in every iteration,
all viewpoints seem to be relevant in a certain context. Therefore, we can conclude that
the metamodel must be extendable for new elements, relations and viewpoints.
Stakeholders Viewpoints and conventions out-

put
Modelling input

developer SRD, definitions, ALD, TLD
operational functional names, definitions,

BLD
interview

director definitions , OCD, BLD interview
C-level functions, FC, High-level OCD
manager definitions, OCD, FC, BLD interview
vendor methodology, OFD, OCD, ALD,

TLD
data model, pro-
cess model

163

Table 6.2: Stakeholders and the found representations

This approach eXtended Organisational Essence and Revealing (XOER) is intended to
be part of a full methodology in our future research.

6.8 Gamification

As mentioned before in our discussion regarding the meaning of enterprise-grade in sec-
tion 2.8, since enterprise engineering typically involves many different aspects, as well as
many different stakeholders [36, 44, 37], it is important for modelling tools to provide dif-
ferent visualisations, in order to make information comprehensive and understandable for
all involved stakeholders in all layers of an organisation. For instance, the Organisation
Construction Diagram (OCD) does not work for C-level stakeholders [4]. C-level prefers
high-level blocks and arrow representations of processes, such as provided by the Action
Rules Specification (ARS) level diagrams. Similarly, towards C-level management, the
Process Structure Diagram (PSD) also does not work well when dealing with complex
processes. Finally, the Object Fact Diagram (OFD), when completely drawn, is also un-
easy to read for a lot of people. Based on the cases we found that dividing it into several
partial models helps to make aspect models clear to stakeholders.
As such, in line with [44], it is necessary to distinguish between different visualisation
strategies for different stakeholder groups and for different purposes. For instance, visu-
alisation can also involve the creation of animation of a process, or even gamification.
Enabling stakeholders to simulate, or even “play” with these visualisations, their pro-
cesses allows them to see the modelled processes as they are running. It also combines
the view on processes with the production facts that are created in a transaction.
Our first attempt with gamification of Design and Engineering Methodology for Organ-
isations (DEMO) models (see fig. 6.6) visualises the OCD in a 3D setting where the actor
roles are visualised as people doing tasks behind their desks. This visualisation is suppor-
ted by a multi-user environment that can play one or more roles within the gamification
scope. This setting allows for multiple roles played by a single player, therefore, restricting
the execution of multiple roles with only one actor to fulfil all labour.

Figure 6.6: Simulation of a DEMO model

These experiences require new visualisations to be created, evaluated and improved. When
new insights appear, first, the metamodel needs to be extended with all new concepts that

164

then emerge in the visualisation and implementation activities.

6.9 Findings

Practitioners daily experience the struggle to (1) explain the models to customers, to make
them (2) understand the diagrams and tables, and to (3) explain the theory of DEMO.
While some customers simply refuse to understand, others fail to grasp the abstraction
level that is inherent to the methodology. In making DEMO more accessible for relevant
stakeholders, various visualising concepts have been used to reduce the complexity, to
show the integrity of the model, and enhance its comprehensiveness. However, most
visualisations went beyond the understanding of some of the stakeholders.
Renovating one’s bathroom might serve as a useful example here. When the construction
worker explains where the pipes in the walls should be put, one will probably understand
the construction. This expert is needed to create this type of model. Management in
the building company understands the function of construction models: they enable the
construction to run on a daily basis and assure interconnections and smooth operations.
To return to our example, project leaders do not need to know where the pipes should
be. They only need to know the connections between the associated workers who have to
finish the work on time and give them relevant information in the right order. This brings
us to upper management. They do not need to know about the construction model; they
are interested in a more efficient business operation seen from a functional perspective.
Or, in construction terms, they want to know whether it is possible to build cheaper,
faster, and more efficiently. The information that enables these insights starts at the
construction of the organisation and needs translation on the way up. It also needs a
representation that relates to the construction model and its functionality.
The main research question that we have investigated is, whether the aspect model visu-
alisations of DEMO contain the right properties for explanation to the stakeholders. This
paper shares our findings in this search for modelling the construction of the organisation
in a way understandable for relevant and associated stakeholders within all layers of the
department or organisation (depending on the scope of interest) as well as explaining the
’way of working’ of creating the model.

165

Part III

Results

167

Chapter 7

Results

7.1 Research Questions Revisited

The main research question throughout this research has been formulated in section 1.4.2:

How can we formalise the DEMO metamodel in such a way that automated
tools can assist modelling in DEMO and that DEMO models can be logically
verified and exchanged for practical usage?

This question has been broken up in pieces and we will evaluate every piece of the question.

169

How can we formalise... We have formalised the metamodel in
chapter 4. We have used partial metamod-
els as described in section 2.6.

...the DEMO metamodel... The partial metamodels have been build in
sections sections 4.2 to 4.5 and we expan-
ded these metamodels with practical model
information in sections sections 4.7 and 4.8.
Thereafter, we discussed the visualisation-
metamodel in chapter 6.

...in such a way that automated tools can
assist modelling in DEMO...

We discussed the implementation of a tool
in chapter 5 and used this tool in real
enterprises to model the organisation in
chapter 6. For the tool we built memory-
metamodels in appendix F.

...and that DEMO models can be logically
verified...

We have defined the notion of verifica-
tion rules in section 2.6. Subsequently, we
used the notion to define the rules in sec-
tion 4.1.2.

...and exchanged for practical usage The exchange-metamodel has been built
and has been used for a gamification model
exchange in section 6.8.

Although the representation of the models is part of the DEMO Specification Language
(DEMOSL) metamodel, we decided to define the representation of these models explicitly
in a visualisation-metamodel in this thesis.
We have formulated our research objective in section 1.4.3.

Our research objective is to
formalise the metamodel of Design and Engineering Methodology for Or-

ganisations (DEMO)
in such a way that

DEMO models can be verified automatically and
DEMO models can be exchanged.

To attain this result, we have to answer the following detailed research questions:
� How can we create the metamodel in such a way that we can implement it in a tool?

We have created an ontological-metamodel section 4.1.1 with enough information
to implement it in a memory-metamodel as outlined in appendix F. This memory-
metamodel became the base of the tool’s internal operation and made it possible to
apply the verification rules. The tool visualisation was described in sections 5.2.4

170

and 5.2.6 and has been connected to this memory-metamodel using add-in function-
ality to provide the model elements and connections from a visualisation to internal
representations.
The AM of DEMOSL was not complete enough, but has improved a lot compared
to the original version. These are not only elements that could be missing in the
tool and the metamodel, but often challenge the theory as well because the obvious
parts of DEMO can be modelled with more ease than before.

� How can we verify a DEMO model in such a way that it is beneficial, and not a
limiting factor, for modelling an organisation?
In Design Science Research (DSR) terminology, the metamodel that was created
from this specification was the first iteration of the DEMOSL artefact. Using all
models from the DEMO book [25], and associated course material, we created a
second iteration.
Based on the metamodel of the second iteration artefact, a tool was created [105],
which has been used in practice to model organisations. In doing so, all missing
modelling elements have been added to the model and to the tool and used in
successive cases. After more than seven real live cases we are convinced that the
CM, PM, and FM are fairly complete to hold all elements and property types needed
for modelling DEMO.
The implementation of the tool (section 5.2) has been used in a number of real case
implementations as described in chapter 6. These implementations resulted in the
preliminary extension section 6.7 of the OER method of the DEMO methodology.
A major challenge in DEMO visualisation remains the potential variety of stake-
holders [44]. The more types of stakeholders the larger the number of viewpoints
might be needed. To aid in bridging the gap between stakeholders in practice, we
added a functional concept to the construction model. This is the functional value
that the organisation gives to the construction model in its organisation. This one-
on-one functional translation is the first step to connect the functional business and
construction domains of DEMO.

� How can we use the DEMO model and the respective metamodel for automating
the modelled organisation or parts of it?
Building the tool, the exchange-metamodel and subsequent use of this tool shows
that the use of the DEMO modelling methodology, supported by the tool, can
provide verified models that can be presented to the enterprise and to validate the
model of the organisation.

We conclude that all of the above mentioned research questions have been answered in
this thesis. During the journey of our research, new questions have arisen and will be
addressed in section 8.2.
Summarizing this revisit, we made adjustments in the DEMOSL to reflect practical needs
in DEMO modelling and to enable automation of the modelling and validation of these
models. Furthermore, we added steps in the methodology to cover a wider perspective of
the modelling needs that do not necessary belong to the ontology domain, but surely are
adjacent and often more visible to business stakeholders.
Exchanging DEMO models with other tools also needs other tools with the same

171

metamodel implementation. The only tool that has this metamodel in place is a gamific-
ation tool. This information exchange has been tested successfully (fig. 7.1).

Figure 7.1: Gamification Scene

7.2 Conclusions

In our effort to automate the verification and exchange DEMO metamodels, we have used
DEMO, DEMOSL, and the tool support of Sparx Enterprise Architect (SEA) and we
gathered experience in the use of these artefacts. We have created a metamodel that con-
sists of the ontological-metamodel, visualisation-metamodel, data-exchange-metamodel,
and visualisation-exchange-metamodel (fig. 4.3 on page page 92). Moreover, we have cre-
ated a tool that consists of a toolbox, diagrams, shapes and shape scripts, ARS grammar,
verification rules, the ontological-metamodel in XSD, memory metamodel, and visual
memory metamodel. In the following sections, we will discuss conclusions of out research
on the topics of DEMOSL, the metamodel, tooling, visualisation, and practical experi-
ences.

7.2.1 DEMOSL

We started our research at the requirements in chapter 4 and compared the aspect
metamodels to our automated support requirements in section 5.1.1. We can conclude
that the original metamodels are incomplete, inconsistent, and not correct in their cur-
rent state. The current state of this metamodel restricts the possibilities for automating
DEMO model verification using these metamodels. Even though we have found several
required improvements, DEMOSL has proven to be a solid base for our metamodel. In
the context of a design science-based research effort, we refined the DEMOSL and ex-
tended it to serve as the foundation for an automated tool development. Furthermore,
the extension of the DEMOSL makes it more comprehensible for involved stakeholders to
create automation designs that support modelling in or with DEMO in practice. We find
the extensions to DEMOSL to be relevant and useful.

172

7.2.2 Metamodel

Creating a metamodel for DEMO is possible from the foundation that DEMOSL has
created. We were able to solve the omissions found as described in section 3.3 using the
new ontological-metamodel and verification-metamodel. We thus resolved the need to
improve the DEMOSL metamodel to be able to model all allowed DEMO models. We
have now reached a stage where the metamodel is sufficient to automate the model’s
modelling and validation.
The Construction Model (CM), Process Model (PM), Fact Model (FM), and Action
Model (AM) all have some defects in their metamodels as shown in sections 3.3.2 to 3.3.5.
Therefore, we could not implement a correct representation of a DEMO model without
making changes. Moreover, we built a verification-metamodel with verification rules to
verify models. The verification-metamodel supersedes the methodologies current entity-
type-based metamodel. DEMOSL needed a complete and restricted logical model of all
allowed DEMO models. This verification-metamodel has references to entity types to
address the attribute types and property types between all concepts. The verification-
metamodel needs to be completed with all verification rules to create a full DEMO spe-
cification. We used it to help us find the verification rules for automating the logical
model.
The ontological-metamodel has been modelled using the principles of Object Role Model-
ing (ORM), and has been expressed using the DEMO 3 notation. This modelling method
is part of DEMO [25, ch5]. In practice, modelling the metamodel is done using the same
method as the one used for modelling the data.
The eight improvements of section 4.2.1 have been added to the ontological-metamodel
and the exchange-metamodel of the CM. These improvements make modelling an organ-
isation easier and also enable the automatic verification of the model.
We have explained the three improvements on the PM’s metamodel in section 4.3.1.
Improvements in the ontological-metamodel enabled essential steps in storing the results
of the analysis in the model.
The FM has been designed at an ontological level. This level was found to be too high for
implementation, and we have detailed it further to make it implementable. We elabor-
ated on the contents in section 4.4.1. The original ontological model has some concepts,
expressed in entity types, that made it directly to the ontological-metamodel of the fact
model. Other concepts have been removed or reduced because of the complexity reduction
of the metamodel.
We found that the action model was insufficiently specified in order to accommodate
specifications in real-life situations as shown in section 4.5.1. Therefore, we adapted the
specification to make it consistent and applicable for more environments, e.g. automation
and implementation. Moreover, we studied the usage of the DEMOBAKER [77] AM
syntax to use it in the specification of the AM and found that this syntax is useful with
some adaptations.
Summarised, we extended the DEMOSL to accommodate all practical found aspects of a
DEMO model. The newly proposed DEMOSL can be used for automatic verification and
for exchanging DEMO models in practice.

173

7.2.3 Tooling

After two years of testing (in real-world cases) and optimising the tool, we can conclude
that, although not finished, the tool’s current version is capable of storing all DEMO mod-
els and is sufficient for visualisation of the business processes. The ontological-metamodel
implemented in the tool appears to be rich enough to store the information of the men-
tioned cases. The tool’s base, SEA, is capable of supporting the modelling in DEMO.
The resulting DEMO modelling tool has been used in practice and is available for re-
searchers/lecturers in the academic world.
Even though the SEA platform allowed us to develop effective DEMO tool support, we
also came across several limitations. For instance, SEA is unable to display tables. Nev-
ertheless, with some effort, we managed to still visualise tables. A more fundamental
limitation pertains to the representation of graphical images. The visualisation engine of
SEA runs on a 100 × 100-pixel image resolution that will resize to the required dimen-
sions. This resizing allows for most graphical visualisations (squares) but falls short for
independent resizable shapes. This same graphical concept applies to connections between
elements, which is also quite restricting within the SEA environment. Verification rules
implemented in the add-on and the freedom within this SEA-add-on compensate for the
internal tool framework’s lack of possibilities.
Besides the discovered limitations of the chosen SEA tool framework, capturing the
DEMOSL in SEA also revealed some missing definitions and inconsistent definitions in
the DEMOSL during our research.

7.2.4 Visualisation

The big challenge in the visualisation of DEMO is on the variety of stakeholders confronted
with this type of modelling. The more layers of an organisation are involved, the more
types of stakeholders are addressed, e.g. employees, managers, C-level, the more significant
number of viewpoints might be needed. In our practice experience, C-level management
is the primary concern in finding the right set of viewpoints.
To bridge the gap in practice, because using schooling for educating the whole manage-
ment level will take a generation, we have added a functional concept to the construction
model. This concept consists of the functional value that the organisation gives to the
construction model in its organisation. This one-on-one functional translation is the first
step to connect the functional business and construction domains of DEMO.
We also found that DEMO can be used to explain the construction to lower management
layers within the organisation and workers.

7.2.5 Experiences

In this section, we summarise some of our experiences in the development of tool support
for DEMO. A more detailed account of these experiences is provided in [7]. This also
involves the changes/refinement needed to the ontological-metamodel (resulting in the
earlier discussed metamodel as shown in fig. 4.5), as well as the need to add a metamodel
dealing with visualisation, and with the exchange of DEMO models, respectively.

174

A first interesting experience was the fact that, even though DEMO has a thorough the-
oretical basis, the original metamodel of DEMO was not specific and detailed enough
to enable an immediate implementation. The latter can be explained by the fact that
the book defining the DEMO method [25] was primarily written to teach learners (stu-
dents and practitioners) to create DEMO models in accordance with the DEMO way of
thinking, and draw (human to human) communicable DEMO models to reason about
the organisation. As such, the book puts the priority on “doing”, when introducing the
different DEMO aspect model kinds. There was no need for a strict metamodel.
In line with this, the formalisation(s) provided in the original DEMO book [25] aimed
to support didactic goals rather than the development of automated modelling tools. As
such, it was never meant to provide a formalisation and metamodels that would enable
the development of, and automated support for, the methodology. As discussed in [81],
different meta-modelling and formalisation goals will / should also result in formalisations
with different level(s) of detail/specificity.
As a result, to enable tool development, a more complete and detailed formalisation and
metamodel was needed. This triggered the initial development, and further evolution,
of the DEMOSL [1], the specification language for DEMO. A first validation of the
metamodel of this specification language was reported in [2]. As part of the (partial)
validation [2], all existing DEMO (example) aspect models (taken from the official course
material and practical cases) were positioned within the specification language to see if
they fitted.
As also discussed in section 7.2.2, beyond the ability to “capture” actual DEMO models
within the specification language, more extensions of the metamodel were needed to enable
verification of the models as well as the operational use of the method in practice [4].
During the implementation, and practical validation, it also turned out that, for prac-
tical purposes, some of the concepts could actually be removed from the metamodel. For
instance, according to the theory, each Organisation Construction Diagram (OCD) cor-
responds to an explicitly defined Scope of Interest (SoI). In practice, however, the SoI
always corresponds directly to a Composite Actor Role (CAR). As a consequence, in
practice, the SoI concept is redundant, and therefore we decided to not have it included
in the metamodel explicitly.
A further interesting finding was the fact that DEMO allows modellers to start from any
of the four aspect models. When learning the method, one generally starts with a Con-
struction Model (CM) and gradually works down to the Action Model (AM); see fig. 7.2.
However, in practice, when interviewing domain experts in an organisation, these experts
usually talk about the existing process and associated rules. In other words, starting
with AM related information first. Additionally, the Fact Model (FM) information about
entity types and attribute types is also provided relatively early when interviewing the
domain experts.
The original DEMO metamodel did not allow for models to “grow” from the different
aspect models, in the sense that the consistency rules would require the model to always
be complete as a whole (so, including all aspect models). Therefore adjustments to the
metamodel needed to be made to allow for such flexibility, while still enforcing (at the
end of the modelling process) the overall consistency.

175

Figure 7.2: CM-AM flow

Furthermore, in practice, organisation models that resulted from the Organisational Es-
sence Revealing (OER) analysis often raised questions regarding the origins of the in-
cluded transaction kinds. More specifically, traceability from the elements in the organ-
isation model to the original OER analysis was missing. To support this kind of cross-
reference of the OER analysis, we have added the interview and interview line concept
into the metamodel. By registering every aspect of the OER analysis as a connection from
the interview line to the elements modelled from that line information we have created a
traceable model from source to the final model. This interview notation technique is also
illustrated in the NEN publication [19].
Another finding is that in practice, there was a need for DEMO models to be related to
their existing or planned implementation. For instance, a “serving” connector was intro-
duced that can be used to connect DEMO model elements to, e.g., application components
in ArchiMate’s Application layer. With this connector, one can, for instance, point to
application components that implement the transaction kind or Transaction Process Step
Kind (TPSK). Another example of the need to be able to include more of the implementa-
tion context involves the introduction of the actor (type) that aggregate actor roles. Such
actors types correspond to job functions in the functional area of the model and, therefore,
combine all competences of the elementary actor roles that are aggregated. This can be
used for HR implementation information.
Finally, the action rule specification, as described in the DEMO method and associated
specification language, consists of a semi formalised way to describe the communication
actions that result in a decision on either actor role. The ontological metamodel of the
action rule was composed of a single entity type that had its only connection to the TPSK
it was based on. To start using the Action Rules Specification (Action Rules Specification
(ARS)) in a more formal way, a more elaborate definition was needed. Therefore, based
on earlier work [45], a grammar to represent action rules was created as well.
Next to such extensions (and simplifications) to the ontological-metamodel, we also found
it necessary to add a visualisation, and an exchange-metamodel. Since the DEMOSL [1]

176

primarily focuses on consistency and completeness of DEMO models from a “content” per-
spective, it does not include any specifics about the actual representation of these models
in terms of diagrams, tables and other possible visualisations. As such, the DEMOSL does
not provide guidelines regarding the concrete syntax of models in terms of, e.g., shapes
and icons to be used. When examining a corpus of models produced across different cases,
we found various variations in drawings of elements that each could be interpreted as the
convention of those elements. In moving towards (standardised) tool support, this had to
be remedied in terms of an explicit metamodel of the allowed visualisations.
As an example, consider the diagram provided in fig. 7.3. In an OCD, the shape is
normally drawn as a circle enclosing a diamond and this circle is stretched in the Process
Structure Diagram (PSD) with the diamond displayed at a seemingly random position
within this “stretched circle”. In fig. 7.3, the name of the transaction appears below,
above, or at the side-top of the transaction. Furthermore, the diamond-shape is positioned
at a certain percentage from the left side, the stretching is a random length, while the swim
lane usage is not consistent (i.e. 07 has the same initiator and executor but is visualised
on top of two swim lanes).

Figure 7.3: PSD specification example

This, finally, takes us to the need to exchange DEMO models between tools; see fig. 7.4
for an example. As reported in earlier work [105], a number of tools1 can model (partial)
DEMO models, while some of these even have a built-in engine to execute the actual
models. It would be beneficial to be able to export and import DEMO models across
tools because specific tools can have specific benefits when used in a certain organisational
environment.
In addition, given the complementarity between modelling methods / languages, such as
e3Value, BPMN, ArchiMate, and DEMO, it would be beneficial to also create concep-
tual bridges between the respective models. Experimental results regarding the potential
benefits of this have been reported in e.g. [17, 63, 64, 51, 87, 88].
To enable (interoperable) export and import of DEMO models across different tools and
engineers, an exchange-metamodel has been created that enables the exchange of both the

1Created by e.g. Bakker&Spees, Technia, Future Insight, and Formetis.

177

<?xml version="1.0" encoding="utf-8"?>
...
<xs:element name="DEMOmodel">
<xs:complexType>
<xs:all>
<xs:element name="TransactionKinds"

minOccurs="0" maxOccurs="1">
<xs:complexType>
<xs:sequence>
<xs:element name="TransactionKind"
type="TransactionKind"
minOccurs="1" maxOccurs="unbounded">

...
<xs:complexType name="TransactionKind">
<xs:sequence>
<xs:element name="Identification"

type="TransactionKindId"></xs:element>
<xs:element name="Name"

type="TransactionKindName"/>
<xs:element name="TransactionSort"

type="TransactionSort" default="unknown"/>
</xs:sequence>
<xs:attribute name="Id"

type="TransactionKindGuid" use="required"/>
</xs:complexType>

...
<xs:complexType

name="OrganisationConstructionDiagram">
<xs:all>
<xs:element name="Name" type="xs:string"/>
<xs:element name="Formulation" type="xs:string"/>
<xs:element name="TransactionKindElements"

minOccurs="0" maxOccurs="1">
...

Figure 7.4: Part of exchange metamodel

actual model, including the different aspect models, as well as their visualisations. The
exchange-metamodel enables translation and connection to various other languages and
includes model extensions to store models in other modelling languages such as Archi-
Mate and Business Process Model and Notation (BPMN). The exchange-metamodel is
based on XML Schema Definition (XSD), due to its common availability in modern-day
development environments [3, 89].
A specific class of model exchanges needed in practice is the exchange between DEMO and
‘Voorwaarden scheppen voor de Invoering van Standaardisatie ICT in de bouw’ (VISI). As
mentioned in section 2.1, VISI is an early descendant of DEMO which has now evolved into
the ISO 29481-2:20122 (BIM related) standard for the construction sector. The exchange
model between DEMO and VISI has been defined in the standard ISO 29481-2:2012.
In summary, the key experiences are:

� The enterprise ontology book [25] serves well for didactic purposes, but does not
provide a formalisation of the method that can be used as a base for tool develop-
ment.

� With regards to the actual DEMO method, the development of the tool, as well as
the use of the tool in practical situation, resulted in:

– The addition of extra concepts in the metamodels.

2https://www.iso.org/obp/ui/#iso:std:iso:29481:-2:ed-1:v1:en

178

– The addition of support for interviews in the context of the Organisational
Essence Revealing (OER) diagrams.

� With regards to the DEMOSL:

– More support was needed to deal with flexibility of modelling processes.

– The DEMOSL was validated and had to be detailed further, in order to enable
automation.

– The latter also included the formalisation of the ARS diagrams.

– A visualisation metamodel needed to be added to cater for visualisations.

– Similarly, an exchange metamodel needed to be added to support the exchange
of models.

� Finally, to support the connection to other enterprise modelling approaches, rela-
tionships needed to be added between DEMO(SL) and some of these other lan-
guages.

179

Chapter 8

Follow-up

8.1 Recommendations

Findings and conclusions as elaborated on and described in this thesis point out improve-
ments in DEMOSL that will subsequently improve the specification, methodology and
practical use of DEMO. Various recommendations, ordered by subject, have been written
for experts, researchers or practitioners of DEMO modelling.

8.1.1 DEMOSL

The readability of DEMOSL can be improved. The most ontological models can be
complemented with practical models that allow users and tool manufacturers to start from
the same and sufficient information level. Compact notation does not always explain the
full description of what was meant in that notation. We discussed our DEMOSL findings
in detail in chapter 3.

8.1.2 Metamodel

Tool manufacturers should at least work with the same standard exchange-metamodel.
This exchange-metamodel will be publicly available and can be used broadly to have the
same language in model exchange. Extensions on this standard exchange-metamodel can
be requested. We recommend the enterprise that maintains the standard to be installed
at the publishing date of this thesis. The standard exchange-metamodel could speed up
the development a complete supporting environment for DEMO practitioners.
The verification rules are the basis for analysis and can help to improve the quality of
models. In practice, not all rules are directly described in the DEMO theory. These
verification rules need to be added to the methodology.

8.1.3 Tooling

It is unlikely that one can make a correct model of an entire organisation without using
some sort of tooling. Tooling takes care of the internal verification of the model and can

181

provide a library of default solutions. All verification rules are applied automatically to
the whole model, and the modeller can rely on the results in order to improve ones models.
Imaging tools like PowerPoint and Visio (without adaptations) cannot contain the model
that it visualises. Like all tools with a single visualisation, they are less likely to support
modelling sufficiently. We recommend using appropriate tooling that supports multiple
views on the same model and verifies the model to the internal modelling rules.

8.2 Future Research

Research triggers research. With this thesis written, the next topics will emerge. We will
continue our research, and we do have an opinion on what one should research in the
context of the subjects mentioned in this thesis.

8.2.1 DEMOSL

The metamodel described in this thesis allows for the extension into other information
into the DEMOSL metamodel. This extension needs to be developed based on the line
set out in this thesis.
In all aspect models there is room for improvement for practical use. While this research
commenced, a new version of DEMO and DEMOSL was published. This new version
consists of new insights, views, and reference models. We need more research on how to
integrate the information in this thesis into the complete methodology. Conflicting ideas
and practical use changes will have to be examined first in order to find restrictions in
theoretical or practical usage. When these restrictions can be solved, one can combine all
the information into a new version of DEMO and DEMOSL.
Since a new version1 of DEMO has been published in 2020, we need to investigate the gap
between the current state of the research on this topic and the new information available.

8.2.2 Metamodel

We could make a distinction between the concrete and abstract syntax of the metamodel.
In the end, the only relevance is the usage of the metamodel. In future research, the
intended use of the metamodel needs to be addressed first.
Therefore, part of the research should evaluate the amount of benefit by using Fact Based
Modelling (FBM) methods.
We will further expand this metamodel to cover the whole of DEMO in order to be able
to exchange all information currently used in DEMO models around the world.
Development on the side of the DEMO methodology needs support in the metamodels,
information and automation.
As a next step, the metamodels will be extended even further to completely support
DEMO 3 and the successor DEMO 4. We certainly need more research on the compliance

1https://demo.nl/download/demo-specification-language-4-6-1/?wpdmdl=842

182

of DEMO 4, and DEMOSL 4 to the current metamodels as the presented models in
DEMOSL 4 already contain different entity types.
Furthermore, we expect that further extensions to the core metamodel will be needed in
order to enable sensible connections to complementary modelling languages and methods.
By now, research on the integration of DEMO and VISI has commenced. The progress
of this part of the research so far has not been enough to add the results to this thesis
yet. This transformation between VISI and DEMO is promising, and the combination
and integration of metamodels can influence the usage of DEMO.

8.2.3 Tooling

Next to the existing SEA environment, we are also starting to perform research on several
newly discovered tools/frameworks in order to investigate if these tools can also use the
add-on that has been developed to extend the modelling capabilities towards DEMO.
The newer version of DEMO also involves new diagram types and tables, which will also
have to be included in future versions of the tool. At first glance, some rules associated
with the new diagrams and tables seem to complicate SEA modelling and might even go
beyond its modelling capabilities.
We plan to elaborate on these insights in future work and will try to make additions to
DEMOSL to compensate or complete the specification language.

8.2.4 Visualisation

In this thesis, we presented our first steps in the eXtended Organisational Essence and
Revealing (XOER) method. Modelling all viewpoints of a model at the same time looks
promising as it helps to model and to think. The upcoming iteration of the XOER method,
which starts upon completion of this thesis, will help us make this method describable
and educable. This upcoming iteration will be subject to an expert group to validate the
metamodel and the used representations. We also expect that this validation will result
in the need for new visualisations (including simulation and gamification) catering to the
different stakeholders’ needs. New research efforts have already been started to get more
insight into the relationship between the complexity of the information and how we try
to communicate this information in an understandable and comprehensible way to all
relevant stakeholders when applying the DEMO methodology and tooling in practice.

8.2.5 Experiences

In future research, we expect to receive more feedback from practitioners based on the
day-to-day use of DEMO. A lot of small and more significant models have been made
in the last 20 years. Due to company legal and compliance restrictions, these models
might not have been published or were not allowed to be published. Collecting this
important information and feedback numbers might give insight into the usage, usefulness
and problems or issues that other practitioners experience when using DEMO and DEMO
tooling.

183

Bibliography

[1] J. L. G. Dietz and M. A. T. Mulder. DEMO Specification Language 3.7. 2017.

[2] M. A. T. Mulder. ‘Validating the DEMO Specification Language’. In: Enterprise
Engineering Working Conference. Springer, 2018, pp. 131–143.

[3] M. A. T. Mulder. ‘Towards a Complete Metamodel for DEMO CM’. In: OTM Con-
federated International Conferences’ On the Move to Meaningful Internet Systems’.
Springer, 2018, pp. 97–106.

[4] M. A. T. Mulder. ‘A design evaluation of an extension to the DEMO methodology’.
In: Advances in Enterprise Engineering X. Advances in Enterprise Engineering
XIII. Springer, 2019, pp. 55–65.

[5] Mark.A.T. Mulder and Henderik.A. Proper. ‘Evolving the DEMO Specification
Language’. In: Enterprise Engineering Working Conference. 2020.

[6] Mark.A.T. Mulder and Henderik.A. Proper. ‘Towards Enterprise-Grade Tool Sup-
port for DEMO’. In: IFIP Working Conference on The Practice of Enterprise
Modeling. Springer. Nov. 2020, pp. 90–105. doi: 10.1007/978-3-030-63479-7_7.

[7] Mark.A.T. Mulder and Henderik.A. Proper. ‘On the Development of Enterprise-
Grade Tool Support for the DEMO Method’. In: CAiSE 2021. 2021.

[8] Mark.A.T. Mulder and Henderik.A. Proper. ‘On Enterprise-Grade Tool Support
for DEMO’. In: Journal Software and Systems Modeling. 2021.

[9] J.L.G. Dietz and H.B.F. Mulder. Enterprise Ontology: A Human-Centric Approach
to Understanding the Essence of Organisation. Springer Nature, 2020.

[10] M. Bjeković, H. A. Proper and J.-S. Sottet. ‘Embracing Pragmatics’. In: Conceptual
Modeling - 33rd International Conference, ER 2014, Atlanta, GA, USA, October
27-29, 2014. Proceedings. Ed. by E. S. K. Yu et al. Vol. 8824. Lecture Notes in
Computer Science. Springer, Heidelberg, Germany, 2014, pp. 431–444. isbn: 978-
3-319-12205-2.

[11] H. A. Proper and G. Guizzardi. ‘On Domain Conceptualization’. In: Enterprise En-
gineering Working Conference. Lecture Notes in Business Information Processing
– Advances in Enterprise Engineering. accepted for publication. Springer, Heidel-
berg, Germany, 2020.

[12] Marc M. Lankhorst, Henderik Alex Proper and Henk Jonkers. ‘The anatomy of
the archimate language’. In: International Journal of Information System Modeling
and Design (IJISMD) 1.1 (2010), pp. 1–32.

185

[13] V. E. van Reijswoud and J. L. G. Dietz. DEMO Modelling Handbook. 2nd. Vol. 1.
Delft University of Technology, 1999.

[14] C. Décosse, W. A. Molnar and H. A. Proper. ‘What Does DEMO Do? A Qualitative
Analysis about DEMO in Practice: Founders, Modellers and Beneficiaries’. In:
Proceedings of the 4th Enterprise Engineering Working Conference (EEWC 2014),
Funchal, Madeira. Ed. by D. Aveiro, J. M. Tribolet and D. Gouveia. Vol. 174.
Lecture Notes in Business Information Processing. Springer, Heidelberg, Germany,
2014, pp. 16–30. isbn: 978-3-319-06504-5.

[15] D. Aveiro and D. D. Pinto. ‘A Case Study Based New DEMO Way of Working and
Collaborative Tooling’. In: 2013 IEEE 15th Conference on Business Informatics.
IEEE Computer Society Press, Los Alamitos, California, 2013, pp. 21–26. isbn:
978-0-7695-5072-5. doi: 10.1109/CBI.2013.12.

[16] S. de Kinderen, K. Gaaloul and H. A. Proper. ‘On Transforming DEMO Models to
ArchiMate’. In: Enterprise, Business-Process and Information Systems Modeling
- 13th International Conference, BPMDS 2012, 17th International Conference,
EMMSAD 2012, and 5th EuroSymposium, held at CAiSE 2012, Gdańsk, Poland,
June 25-26, 2012. Proceedings. Ed. by I. Bider et al. Vol. 113. Lecture Notes in
Business Information Processing. Gdańsk, Poland: Springer, Heidelberg, Germany,
June 2012, pp. 270–284. isbn: 978-3-642-31071-3.

[17] Artur Caetano, Aurélio Assis and José Tribolet. ‘Using DEMO to analyse the
consistency of business process models’. In: Advances in Enterprise Information
Systems II. CRC Press, June 2012, pp. 133–146. doi: 10.1201/b12295-17.

[18] Marné De Vries and Dominik Bork. ‘Identifying Scenarios to Guide Transforma-
tions from DEMO to BPMN.’ In: EEWC. 2020, pp. 92–110.

[19] Mark A T Mulder. ‘NEN 7513 modelled in DEMO’. In: Unpublished manuscript
(2021). url: https://teec2.nl/nen7513/.

[20] ‘ISO/IEC/IEEE 24765’. In: Systems and Software Engineering – Vocabulary (SE-
Vocab) (2017).

[21] J. B. F. Mulder. Rapid Enterprise Design. 2007. isbn: 9-081-04801-5.

[22] Domenik Bork and Hans-Georg Fill. ‘Formal aspects of enterprise modeling meth-
ods: a comparison framework’. In: 2014 47th Hawaii international conference on
system sciences. IEEE. 2014, pp. 3400–3409.

[23] K. Peffers et al. ‘A Design Science Research Methodology for Information Systems
Research’. In: Journal of Management Information Systems 24.3 (2007), pp. 45–
77.

[24] Roel J. Wieringa. Design science methodology for information systems and software
engineering. Springer, 2014.

[25] J. L. G. Dietz. Enterprise Ontology – Theory and Methodology. Springer, Heidel-
berg, Germany, 2006. isbn: 978-3-540-29169-5.

186

[26] A. P. C. Perinforma. The Essence of Organisation. 3rd revised edition. The Neth-
erlands: Sapio, 2013.

[27] J. L. G. Dietz. DEMO Specification Language 3.6. 2017.

[28] C. K. Ogden and I. A. Richards. The Meaning of Meaning – A Study of the Influ-
ence of Language upon Thought and of the Science of Symbolism. Oxford, United
Kingdom: Magdalene College, University of Cambridge, 1923.

[29] Uwe Aßmann, Steffen Zschaler and Gerd Wagner. ‘Ontologies, meta-models, and
the model-driven paradigm’. In: Ontologies for software engineering and software
technology. Springer, 2006, pp. 249–273.

[30] Lambertus Johannes Hommes. The evaluation of business process modeling tech-
niques. TU Delft, Delft University of Technology, 2004.

[31] Todd Partridge. What Exactly Does “Enterprise-Grade” Mean? Website. July
2017. url: https : / / www . linkedin . com / pulse / what - exactly - does -

enterprise-grade-mean-todd-partridge.

[32] Gartner. Information Technology Glossary. website. Nov. 2020. url: https://
www.gartner.com/en/information-technology/glossary/enterprise-grade.

[33] Gerald Sparks. What does Enterprise Grade mean? website. Aug. 2020. url:
https://www.quora.com/What-does-Enterprise-Grade-mean.

[34] Ben Kepes. What Does Enterprise GradeReally Mean? website. Dec. 2013. url:
https : / / www . forbes . com / sites / benkepes / 2013 / 12 / 18 / what - does -

enterprise-grade-really-mean.

[35] Raymond Nunn. What is “Enterprise Grade Software”? website. Nov. 2015. url:
http://tractsystems.com/what-is-enterprise-grade-software/.

[36] M. Op ’t Land et al. Enterprise Architecture - Creating Value by Informed Gov-
ernance. The Enterprise Engineering Series. Springer, Heidelberg, Germany, 2008.
isbn: 978-3-540-85231-5.

[37] R. Wagter and H. A. Proper. ‘Involving the right stakeholders – Enterprise co-
herence governance’. In: Architectural Coordination of Enterprise Transformation.
Ed. by H. A. Proper et al. The Enterprise Engineering Series. Springer, Heidelberg,
Germany, 2018. Chap. 10, pp. 99–110. isbn: 978-3-319-69583-9.

[38] Duarte Gouveia and David Aveiro. ‘Things, References, Connectors, Types, Vari-
ables, Relations and Attributes–A Contribution to the FI and MU Theories’. In:
Advances in Enterprise Engineering X. Springer, 2016, pp. 181–195.

[39] S. J. H. Van Kervel. ‘Ontology driven Enterprise Information Systems Engineering’.
en. ID: urn:NBN:nl:ui:24-uuid:8c42378a-8769-4a48-a7fb-f5457ede0759; ths:Dietz,
J.L.G. - org:TU Delft - dgg:TU Delft, Delft University of Technology -. Doctoral
dissertation. 2012. isbn: 978-90-9027133-0. url: http://resolver.tudelft.nl/
uuid:8c42378a-8769-4a48-a7fb-f5457ede0759.

[40] Richard Feynman. ‘EBNF: A Notation to Describe Syntax’. In: - (2016). url:
http://www.%20ics.%20uci.%20edu/~%20pattis/misc/ebnf2.%20pdf.

187

[41] D. L. Moody. ‘The “Physics” of Notations: Toward a Scientific Basis for Construct-
ing Visual Notations in Software Engineering’. In: IEEE Transactions on Software
Engineering 35.6 (2009), pp. 756–779.

[42] M.-E. Iacob et al. ArchiMate 1.0 Specification. The Open Group, 2009. isbn: 978-
9-087-53502-5.

[43] M. Op ’t Land and J. L. G. Dietz. ‘Enterprise ontology based splitting and con-
tracting of organizations’. In: Proceedings of the 23rd Annual ACM Symposium on
Applied Computing (SAC 2008), Fortaleza, Ceará, Brazil. Ed. by L. M. Liebrock.
ACM Press, New York, New York, 2008. isbn: 978-1-59593-753-7.

[44] M. M. Lankhorst et al. ‘Viewpoints and Visualisation’. In: pp. 171–214.

[45] Magno Andrade, David Aveiro and Duarte Pinto. ‘Bridging Ontology and Imple-
mentation with a New DEMO Action Meta-model and Engine’. In: Enterprise
Engineering Working Conference. Springer. 2019, pp. 66–82.

[46] James Cadle, Debra Paul and Paul Turner. Business analysis techniques: 72 es-
sential tools for success. BCS, The Chartered Institute, 2010.

[47] Randy Goebel et al. ‘Explainable AI: the new 42?’ In: International Cross-
Domain Conference for Machine Learning and Knowledge Extraction. Springer,
2018, pp. 295–303.

[48] Thomas Allweyer. BPMN 2.0: introduction to the standard for business process
modeling. BoD–Books on Demand, 2016.

[49] Terry Halpin. ‘ORM 2 graphical notation’. In: Technical Report ORM2–02 (2005).

[50] Koen Smit, Martijn Zoet and Matthijs Berkhout. ‘Functional Requirements for
Business Rules Management Systems’. In: (2017).

[51] Roland Ettema and Jan LG Dietz. ‘Archimate and demo–mates to date?’ In: Ad-
vances in Enterprise Engineering III. Lecture Notes in Business Information Pro-
cessing 34 (2009). Ed. by A. Albani, J. Barjis and J. L. G. Dietz, pp. 172–186.

[52] J. L. G. Dietz. Enterprise Engineering The Manifesto. Tech. rep. 2011. url: http:
//www.ciaonetwork.org/publications/EEManifesto.pdf.

[53] J. L. G. Dietz. Architecture: building strategy into design. Academic Service The
Hague, 2008.

[54] J.L.G. Dietz et al. ‘The Discipline of Enterprise Engineering’. In: International
Journal of Organisational Design and Engineering 3.1 (2013), pp. 86–114.

[55] Jan AP Hoogervorst and Jan LG Dietz. ‘Enterprise architecture in enterprise engin-
eering’. In: Enterprise Modelling and Information Systems Architectures (EMISAJ)
3.1 (2008), pp. 3–13.

[56] Donald H. Liles et al. ‘Enterprise engineering: A discipline?’ In: Society for Enter-
prise Engineering Conference Proceedings. Vol. 6. Citeseer, 1995. Chap. 1195.

[57] Paul Cilliers. ‘Knowing complex systems’. In: Managing Organisational Complex-
ity: Philosophy, Theory, Application, IAP, Connecticut (2005), pp. 7–19.

188

[58] Douglas O. Norman and Michael L. Kuras. ‘Engineering complex systems’. In:
Complex Engineered Systems. Springer, 2006, pp. 206–245.

[59] Peter Bernus et al. ‘Enterprise engineering and management at the crossroads’. In:
Computers in Industry 79 (2016), pp. 87–102.

[60] Howard Smith and Peter Fingar. Business process management: the third wave.
Vol. 1. Meghan-Kiffer Press Tampa, FL, 2003.

[61] Traci A. Carte and Mark E. Cornelius. ‘Integrating ERD and UML Concepts
When Teaching Data Modeling.’ In: Journal of Information Systems Education
17.1 (2006).

[62] Jürgen Habermas. Theorie des kommunikativen Handelns. Vol. 2. Suhrkamp Frank-
furt, 1981.

[63] Ondřej Mráz et al. ‘Converting DEMO PSI transaction pattern into BPMN: a
complete method’. In: Enterprise Engineering Working Conference. Springer, 2017,
pp. 85–98.

[64] Thomas Gray, Dominik Bork and Marné De Vries. ‘A New DEMO Modelling
Tool that Facilitates Model Transformations’. In: Enterprise, Business-Process and
Information Systems Modeling. Springer, 2020, pp. 359–374.

[65] Duarte Gouveia and David Aveiro. ‘Modeling the system described by the EU Gen-
eral Data Protection Regulation with DEMO’. In: Enterprise Engineering Working
Conference. Springer, 2018, pp. 144–158.

[66] J.L.G. Dietz and J.A.P. Hoogervorst. ‘The principles of enterprise engineering’. In:
Enterprise Engineering Working Conference. Springer, 2012, pp. 15–30.

[67] M. Dumay et al. ‘Evaluation of DEMO and the Language/Action Perspective after
10 years of experience’. In: Proceedings of LAP (2005).

[68] V. E. Van Reijswoud. ‘The structure of business communication: Theory, model
and application.’ Doctoral dissertation. 1996.

[69] J. L. G. Dietz. DEMO-3 summary. 2016.

[70] L. Terlouw. ‘Modularization and Specification of Service-Oriented Systems’. Doc-
toral dissertation. Delft, the Netherlands: Delft Technical University, July 2011.
isbn: 978-9-461-08182-7.

[71] J. De Jong. ‘A Method for Enterprise Ontology based Design of Enterprise Inform-
ation Systems’. Doctoral dissertation. 2013.

[72] Roland Wilfred Ettema. Using triangulation in lean six sigma to explain quality
problems. [Sl: sn], 2016.

[73] A. R. Hevner et al. ‘Design science in information systems research’. In: MIS
quarterly 28.1 (2004), pp. 75–105.

[74] J. van Aken and D. Andriessen. Handboek ontwerpgericht wetenschappelijk on-
derzoek. [Handbook for Design Science Research]. Boom Lemma, 2011.

189

[75] Stephan Kurpjuweit and Robert Winter. ‘based meta model engineering’. In: En-
terprise modelling and information systems architectures–concepts and applications
(2007).

[76] Yan Wang. ‘Transformation of demo models into exchangeable format’. In: Delft
University of Technology, Netherlands (2009).

[77] Carlos Alberto da Silva Figueira. ‘DEMO models based automatic workflow process
generation’. In: (2013).

[78] E. Maij et al. ‘Use cases and DEMO: aligning functional features of ICT-
infrastructure to business processes’. In: International journal of medical inform-
atics 65.3 (2002), pp. 179–191.

[79] Marien R. Krouwel and Martin Op’t Land. ‘Combining DEMO and Normalized
Systems for developing agile enterprise information systems’. In: Advances in En-
terprise Engineering V (2011), pp. 31–45.

[80] Linda Iris Terlouw. Modularization and specification of service-oriented systems.
PhD thesis, Delft Technical University, Delft, The Netherlands, 2011.

[81] Arthur HM ter Hofstede and Henderik Alex Proper. ‘How to formalize it?: Form-
alization principles for information system development methods’. In: Information
and Software technology 40.10 (1998), pp. 519–540.

[82] J. L. G. Dietz. DEMO Specification Language 3.5. 2016.

[83] J. L. G. Dietz. DEMO Specification Language 3.4. 2016.

[84] Leo Apostel. ‘Towards the formal study of models in the non-formal sciences’. In:
Synthese (1960), pp. 125–161.

[85] Christos G. Cassandras and Stephane Lafortune. Introduction to discrete event
systems. Springer Science and Business Media, 2009.

[86] Y. Wang, A. Albani and J. Barjis. ‘Transformation of DEMO metamodel into XML
schema’. In: Advances in Enterprise Engineering V. Springer, 2011, pp. 46–60.

[87] S. de Kinderen, K. Gaaloul and H. A. Proper. ‘Transforming Transaction Models
into ArchiMate’. In: EP-2012-Kirikova-CAiSEForum, pp. 114–121.

[88] S. de Kinderen, K. Gaaloul and H. A. Proper. ‘Bridging value modelling to Archi-
Mate via transaction modelling’. In: Software & Systems Modeling 13.3 (2014),
pp. 1043–1057.

[89] Y. Wang. ‘Transformation of demo models into exchangeable format’. Doctoral
dissertation. Delft University of TechnologyDelft, The Netherlands, 2009.

[90] Lucas O. Meertens et al. ‘Mapping the business model canvas to archimate’. In:
Proceedings of the 27th annual ACM symposium on applied computing. ACM, 2012,
pp. 1694–1701.

[91] Antonio Gonçalves, Pedro Sousa and Marielba Zacarias. ‘Capturing Activity Dia-
grams from Ontological Model’. In: International Journal of Research in Business
and Technology 2.3 (2013), pp. 33–44.

190

[92] J. Vos. Business modeling software focused on DEMO; http://wiki.xemod.eu. 2011.
url: http://wiki.xemod.eu.

[93] Software AG. ARIS http://www2.softwareag.com/.

[94] CaseWise. The Casewise Suite and Casewise
Modeler; http://www.casewise.com/product/modeler/. 2016. url: http :

//www.casewise.com/product/modeler/.

[95] T. Severien. Business Fundamentals - Verbeteren vanuit de essen-
tie; http://www.businessfundamentals.nl/. 2016. url: http : / / www .

businessfundamentals.nl/.

[96] Formetis. Online modeling tool for process design and animation; ht-
tps://www.demoworld.nl/. 2017. url: https://www.demoworld.nl/Portal/Home.

[97] Sparx. Enterprise Architect https://www.sparxsystems.eu/start/home/. 2017. url:
https://www.sparxsystems.eu/start/home/.

[98] Lambertus Johannes Hommes. ModelWorld; http://ModelWorld.nl. 2015.

[99] uSoft. URequire Studio; http://www.usoft.com/software/urequire-studio. 2016.
url: http://www.usoft.com/software/urequire-studio.

[100] R. Ryan Nelson. ‘IT project management: Infamous failures, classic mistakes, and
best practices.’ In: MIS Quarterly executive 6.2 (2007).

[101] J. L. G. Dietz and J. Barjis. ‘Supporting the DEMO Methodology with a Busi-
ness Oriented Petri Net’. In: Fourth CAiSE/ IFIP8.1 International Workshop on
Evaluation of Modeling Methods in Systems Analysis and Design (EMMSAD’99).
Heidelberg, Germany, 1999.

[102] Abhimanyu Gupta, Geert Poels and Palash Bera. ‘A Proposal of Using Conceptual
Models for User Story Development and Maintenance’. In: 17th AIS SIGSAND
Symposium. 2018.

[103] Theo Janssen. Enterprise Engineering: Sustained Improvement of Organizations.
Springer, 2015.

[104] M. Op ’t Land and J.L.G. Dietz. ‘Benefits of enterprise ontology in governing com-
plex enterprise transformations’. In: Enterprise Engineering Working Conference.
Springer, 2012, pp. 77–92.

[105] M. A. T. Mulder and H. A. Proper. ‘Towards Enterprise-Grade Tool Support for
DEMO’. In: The Practice of Enterprise Modeling - 13th IFIP Working Conference,
PoEM 2020, Riga, Latvia, November 25-27, 2020, Proceedings. Ed. by Dominik
Bork Jānis Grabis. Lecture Notes in Business Information Processin. Springer,
2020.

191

8
0

D
a
ta

E
x
c
h
a
n
g
e

L
o
g
ic

G
ra

m
m

a
r

V
e
ri

fi
c
a
ti

o
n

M
D

G
S
h
a
p

e
sc

ri
p
t

ty
p

e
p
a
g
e

ty
p

e
p
a
g
e

ty
p

e
p
a
g
e

ty
p

e
p
a
g
e

ty
p

e
p
a
g
e

ty
p

e
p
a
g
e

ty
p

e
p
a
g
e

D
E

M
O

M
o
d
e
l

fi
g
.

4
.5

T
-8

2
li
st

in
g

D
.2

A
-5

9
e
q
.

E
.1

A
-1

0
6

-
-

fi
g
.

G
.1

A
-1

3
7

-
S
c
h
e
m

a
fi

g
.

4
.5

T
-8

2
li
st

in
g

D
.1

A
-5

9
e
q
.

E
.1

A
-1

0
6

-
-

fi
g
.

G
.1

A
-1

3
7

-
A

sp
e
c
tm

o
d
e
l

fi
g
.

4
.5

T
-8

2
-

-
-

-
fi

g
.

G
.2

A
-1

3
7

-
C

M
fi

g
.

4
.6

T
-8

3
-

e
q
.

E
.2

A
-1

0
7

-
a
p
p

e
n
d
ix

F
.1

A
-1

1
6

fi
g
.

G
.5

A
-1

3
8

-
e
q
.

E
.3

A
-1

0
7

e
q
.

E
.4

A
-1

0
7

P
M

fi
g
.

4
.6

T
-8

3
-

e
q
.

E
.3

5
A

-1
1
1

-
-

fi
g
.

G
.1

9
A

-1
4
8

-
e
q
.

E
.3

6
A

-1
1
1

e
q
.

E
.3

7
A

-1
1
1

F
M

fi
g
.

4
.6

T
-8

3
-

e
q
.

E
.4

9
A

-1
1
3

-
-

fi
g
.

G
.2

0
A

-1
4
8

-
e
q
.

E
.5

0
A

-1
1
3

e
q
.

E
.5

1
A

-1
1
3

A
M

fi
g
.

4
.6

T
-8

3
e
q
.

E
.6

3
A

-1
1
5

li
st

in
g

C
.6

A
-1

7
a
p
p

e
n
d
ix

F
.2

A
-1

1
8

fi
g
.

G
.2

1
A

-1
4
9

-

E
T

K
G

u
id

fi
g
.

4
.1

2
T

-9
2

li
st

in
g

D
.3

7
A

-7
2

-
-

-
-

-
Id

fi
g
.

4
.1

2
T

-9
2

li
st

in
g

D
.5

5
A

-7
6

-
li
st

in
g

C
.1

A
-1

4
-

fi
g
.

G
.5

A
-1

3
8

li
st

in
g

G
.1

A
-1

4
9

N
a
m

e
fi

g
.

4
.1

2
T

-9
2

li
st

in
g

D
.6

5
A

-8
5

-
li
st

in
g

C
.2

A
-1

4
-

fi
g
.

G
.5

A
-1

3
8

li
st

in
g

G
.1

A
-1

4
9

[e
]

e
x
e
c
u
to

r
fi

g
.

4
.1

5
T

-9
4

li
st

in
g

D
.8

1
A

-8
9

e
q
.

E
.7

A
-1

0
7

-
-

fi
g
.

G
.5

A
-1

3
8

li
st

in
g

G
.2

6
A

-1
8
3

li
st

in
g

D
.8

2
A

-8
9

-
-

E
T

K
e
x
is

ts
fi

g
.

4
.1

5
T

-9
4

-
e
q
.

E
.1

3
A

-1
0
8

-
-

-
-

[i
]

in
it

ia
to

r
fi

g
.

4
.1

5
T

-9
4

li
st

in
g

D
.7

9
A

-8
8

e
q
.

E
.8

A
-1

0
7

-
li
st

in
g

F
.1

A
-1

1
6

fi
g
.

G
.5

A
-1

3
8

li
st

in
g

G
.2

5
A

-1
8
2

li
st

in
g

D
.8

0
A

-8
8

-
-

[c
]

T
K

in
A

T
K

fi
g
.

4
.1

2
T

-9
2

-
e
q
.

E
.9

A
-1

0
7

-
-

-
-

[c
]

T
K

in
C

A
R

fi
g
.

4
.1

2
T

-9
2

-
e
q
.

E
.1

0
A

-1
0
7

-
-

-
-

-
e
q
.

E
.1

1
A

-1
0
8

-
-

-
-

-
e
q
.

E
.1

2
A

-1
0
8

-
-

-
-

A
T

K
[a

]
a
c
c
e
ss

to
b
a
n
k

fi
g
.

4
.1

4
T

-9
4

li
st

in
g

D
.2

8
A

-7
0

e
q
.

E
.1

6
A

-1
0
8

-
-

-
li
st

in
g

G
.2

A
-1

5
4

F
T

in
T

K
fi

g
.

4
.1

4
T

-9
4

-
e
q
.

E
.5

9
A

-1
1
4

-
-

-
-

E
A

R
E

A
R

in
C

A
R

fi
g
.

4
.1

5
T

-9
4

li
st

in
g

D
.2

9
A

-7
0

e
q
.

E
.1

8
A

-1
0
8

-
-

-
li
st

in
g

G
.3

A
-1

5
5

e
x
e
c

si
n
g
le

fi
g
.

4
.1

5
T

-9
4

-
e
q
.

E
.1

9
A

-1
0
8

-
-

-
-

A
R

a
c
c
e
ss

E
T

K
fi

g
.

4
.1

5
T

-9
4

-
e
q
.

E
.2

0
A

-1
0
9

-
-

fi
g
.

G
.5

A
-1

3
8

-
e
x
e
c

m
u
lt

i
fi

g
.

4
.1

6
T

-9
5

-
e
q
.

E
.2

1
A

-1
0
9

-
-

-
-

C
A

R
fi

g
.

4
.1

7
T

-9
6

li
st

in
g

D
.3

0
A

-7
0

e
q
.

E
.2

2
A

-1
0
9

-
-

-
li
st

in
g

G
.4

A
-1

6
0

fi
g
.

4
.1

7
T

-9
6

-
e
q
.

E
.2

3
A

-1
0
9

-
-

-
-

fi
g
.

4
.1

7
T

-9
6

-
e
q
.

E
.2

4
A

-1
0
9

-
-

-
-

fi
g
.

4
.1

7
T

-9
6

-
e
q
.

E
.2

5
A

-1
0
9

-
-

-
-

fi
g
.

4
.1

7
T

-9
6

-
e
q
.

E
.2

6
A

-1
0
9

-
-

-
-

E
T

fi
g
.

4
.2

9
T

-1
0
4

li
st

in
g

D
.3

3
A

-7
1

-
-

-
-

li
st

in
g

G
.7

A
-1

6
6

[o
]

c
o
n
c
e
rn

s
-

-
-

-
-

-
-

[s
]

sp
e
c
ia

li
sa

ti
o
n

-
li
st

in
g

D
.8

7
A

-9
0

-
-

-
-

-
[r

]
a
g
g
re

g
a
ti

o
n

-
li
st

in
g

D
.8

8
A

-9
0

-
-

-
-

-
[g

]
g
e
n
e
ra

li
sa

ti
o
n

-
li
st

in
g

D
.8

9
A

-9
0

-
-

-
-

-

P
T

-
li
st

in
g

D
.3

4
A

-7
1

-
-

-
-

li
st

in
g

G
.9

A
-1

6
8

A
T

-
li
st

in
g

D
.3

5
A

-7
1

-
-

-
-

-

C
E

T
-

-
-

-
-

-
-

G
S
K

re
q
u
e
st

fi
g
.

4
.2

4
T

-1
0
0

-
e
q
.

E
.4

4
A

-1
1
1

-
-

-
li
st

in
g

G
.5

A
-1

6
1

si
n
g
le

fi
g
.

4
.2

4
T

-1
0
0

-
e
q
.

E
.4

6
A

-1
1
2

-
-

-
-

T
P

S
K

T
P

S
K

p
a
rt

o
f

T
K

fi
g
.

4
.2

5
T

-1
0
1

li
st

in
g

D
.3

1
A

-7
0

e
q
.

E
.4

7
A

-1
1
2

-
-

-
li
st

in
g

G
.6

A
-1

6
1

T
P

S
K

in
it

T
P

S
K

fi
g
.

4
.2

5
T

-1
0
1

li
st

in
g

D
.9

3
A

-9
1

e
q
.

E
.4

8
A

-1
1
2

-
-

-
li
st

in
g

G
.2

9
A

-1
8
6

[y
]

w
a
it

-
li
st

in
g

D
.9

2
A

-9
1

-
-

-
-

li
st

in
g

G
.3

0
A

-1
8
7

A
R

-
-

-
li
st

in
g

C
.4

A
-1

5
-

-
-

-
-

-
li
st

in
g

C
.5

A
-1

5
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

192

8
0

D
a
ta

E
x
c
h
a
n
g
e

L
o
g
ic

G
ra

m
m

a
r

V
e
ri

fi
c
a
ti

o
n

M
D

G
S
h
a
p

e
sc

ri
p
t

ty
p

e
p
a
g
e

ty
p

e
p
a
g
e

ty
p

e
p
a
g
e

ty
p

e
p
a
g
e

ty
p

e
p
a
g
e

ty
p

e
p
a
g
e

ty
p

e
p
a
g
e

-
-

-
-

-
-

-
-

-
-

-
-

-
-

[h
]

w
h
e
n

-
-

-
-

-
-

li
st

in
g

G
.1

1
A

-1
7
0

[w
]

w
h
il
e

-
-

-
-

-
-

li
st

in
g

G
.1

2
A

-1
7
0

[t
]

th
e
n

fi
g
.

4
.3

0
T

-1
0
6

-
-

-
-

-
li
st

in
g

G
.1

4
A

-1
7
1

[l
]

e
ls

e
-

-
-

-
-

-
li
st

in
g

G
.1

5
A

-1
7
1

[W
]

w
it

h
-

-
-

-
-

-
li
st

in
g

G
.4

0
A

-1
9
4

[x
]

e
x
c
lu

d
e
s

-
li
st

in
g

D
.9

1
A

-9
1

-
-

-
-

-
-

li
st

in
g

D
.9

0
A

-9
1

-
-

-
-

-

D
ia

g
ra

m
s

O
C

D
fi

g
.

4
.1

1
T

-9
0

li
st

in
g

D
.1

0
8

A
-9

4
e
q
.

E
.2

7
A

-1
0
9

-
-

fi
g
.

G
.1

8
A

-1
4
8

-
fi

g
.

4
.1

1
T

-9
0

-
e
q
.

E
.2

8
A

-1
0
9

-
-

fi
g
.

G
.1

2
A

-1
4
4

-
fi

g
.

4
.1

1
T

-9
0

-
e
q
.

E
.2

9
A

-1
1
0

-
-

fi
g
.

G
.1

2
A

-1
4
4

-
fi

g
.

4
.1

1
T

-9
0

-
e
q
.

E
.3

0
A

-1
1
0

-
-

fi
g
.

G
.1

2
A

-1
4
4

-
T

P
T

-
-

e
q
.

E
.3

1
A

-1
1
0

-
-

-
-

-
-

e
q
.

E
.3

2
A

-1
1
0

-
-

-
-

-
-

e
q
.

E
.7

A
-1

0
7

-
-

-
-

-
-

e
q
.

E
.5

6
A

-1
1
4

-
-

-
-

B
C

T
-

-
e
q
.

E
.3

3
A

-1
1
0

-
-

-
-

-
-

e
q
.

E
.3

4
A

-1
1
0

-
-

-
-

-
-

e
q
.

E
.5

9
A

-1
1
4

-
-

-
-

P
S
D

fi
g
.

4
.2

1
T

-9
8

li
st

in
g

D
.1

0
9

A
-9

7
e
q
.

E
.3

8
A

-1
1
1

-
-

fi
g
.

G
.1

9
A

-1
4
8

-
fi

g
.

4
.2

1
T

-9
8

-
e
q
.

E
.3

9
A

-1
1
1

-
-

fi
g
.

G
.1

4
A

-1
4
6

-
fi

g
.

4
.2

1
T

-9
8

-
e
q
.

E
.4

0
A

-1
1
1

-
-

-
-

T
P

D
fi

g
.

4
.2

3
T

-9
9

li
st

in
g

D
.1

1
0

A
-9

8
e
q
.

E
.4

1
A

-1
1
1

-
-

fi
g
.

G
.1

9
A

-1
4
8

-
fi

g
.

4
.2

3
T

-9
9

-
e
q
.

E
.4

2
A

-1
1
1

-
-

fi
g
.

G
.1

6
A

-1
4
7

-
O

F
D

-
li
st

in
g

D
.1

1
1

A
-9

8
e
q
.

E
.5

4
A

-1
1
3

-
-

fi
g
.

G
.2

0
A

-1
4
8

-
-

-
e
q
.

E
.5

3
A

-1
1
3

-
-

fi
g
.

G
.1

4
A

-1
4
6

-
A

R
D

fi
g
.

4
.3

0
T

-1
0
6

li
st

in
g

D
.1

1
2

A
-9

9
e
q
.

E
.6

6
A

-1
1
5

-
-

fi
g
.

G
.2

1
A

-1
4
9

-
fi

g
.

4
.3

0
T

-1
0
6

-
e
q
.

E
.6

8
A

-1
1
5

-
-

fi
g
.

G
.1

1
A

-1
4
3

-
fi

g
.

4
.3

0
T

-1
0
6

-
e
q
.

E
.6

9
A

-1
1
5

-
-

fi
g
.

G
.1

1
A

-1
4
3

-
-

-
-

-
-

-
-

W
IS

-
-

-
-

-
fi

g
.

G
.2

1
A

-1
4
9

li
st

in
g

G
.1

6
A

-1
7
2

-
-

-
-

-
fi

g
.

G
.1

7
A

-1
4
7

li
st

in
g

G
.4

2
A

-1
9
6

A
R

S
-

li
st

in
g

D
.1

1
2

A
-9

9
-

-
-

fi
g
.

G
.2

1
A

-1
4
9

-
-

-
-

-
-

fi
g
.

G
.1

1
A

-1
4
3

-
A

F
D

-
li
st

in
g

D
.1

1
3

A
-1

0
0

-
-

-
fi

g
.

G
.1

0
A

-1
4
2

-
-

-
-

-
-

fi
g
.

G
.1

8
A

-1
4
8

-
D

F
S

-
-

-
-

-
fi

g
.

G
.2

0
A

-1
4
8

-
E

L
S

-
-

-
-

-
fi

g
.

G
.2

0
A

-1
4
8

-
-

-
-

-
-

-
-

S
E

C
-

-
-

-
-

fi
g
.

G
.1

5
A

-1
4
6

-

193

List of Figures

1.1 Five Ways of the DEMO methodology . 27
1.2 Hevner DSR [73] . 38
1.3 Ettema DSR for fuzzy problems, [72] . 40
1.4 Wieringa DSR, framework [24] . 41
1.5 Wieringa DSR, engineering cycle [24] . 41
1.6 Wierings DSR, problem-solving [24] . 42
1.7 Wierings DSR, scale up [24] . 43
1.8 Wieringa’s DSR, empirical circle [24] . 44
1.10 Thesis Artefacts in their Environment . 46
1.9 Literature and their dependencies . 48

2.1 DEMO 3 universal transaction pattern . 53
2.2 Happy flow . 54
2.3 Standard flow . 55
2.4 Revoke request . 56
2.5 Revoke Promise . 57
2.6 Revoke State . 57
2.7 Revoke Accept . 58
2.8 DEMO aspect models . 60
2.9 Poligyn OCD modelled in the tool . 61
2.10 Poligyn TPT modelled in the tool . 61
2.11 Poligyn PSD modelled in the tool . 62
2.12 Poligyn OFD modelled in the tool . 63
2.13 DEMO 3 and 4 diagram visualisations . 64
2.14 DEMO 3 and 4 table visualisations . 65
2.15 Perspectives on DEMO Modelling . 67
2.16 The General Conceptual Modelling Framework, adopted from [9] 68

3.1 Diagram of the metamodel of the CM . 74
3.2 Process Metamodel . 75
3.3 Action Metamodel . 75
3.4 Fact Metamodel . 76
3.5 Metamodel 3.6 of the CM [27, sl.27] . 78
3.6 Metamodel 3.7 of the CM [1, sl.31] . 78
3.7 RAC Model from TEoO [26, p.72] . 79
3.8 Transaction Kind and CAR . 80

194

3.9 CAR example [1, sl.10] . 80
3.10 PM Metamodel 3.6 [27, sl.28] . 81
3.11 PM Metamodel 3.7 [1, sl.32] . 82
3.12 Process Model Legend [1, sl.18] . 83
3.13 Fact Model 3.7 Metamodel [1, sl.34] . 83
3.14 Action Metamodel 3.7 [1, sl.33] . 85
3.15 (Partial) Action Rule Specification . 86
3.16 PSD specification example . 87

4.1 the exchange subset of the metamodel . 90
4.2 the visualisation subset of the metamodel 91
4.3 metamodel set. Combination of figs. 2.16, 4.1 and 4.2 92
4.4 DEMOSL high-level ontological-metamodel 93
4.5 DEMOSL ontological-metamodel . 94
4.6 DEMO aspect models (Blue=Construction Model (CM), Red=Process

Model (PM), Green=Fact Model (FM), and Yellow=Action Model (AM)) . 95
4.7 ARS grammar upgrade example . 97
4.8 DEMOSL Core exchange-metamodel . 100
4.9 DEMOSL CM ontological-metamodel 3.7 101
4.10 DEMOSL CM data metamodel proposal 102
4.11 DEMOSL CM OCD visualisation . 103
4.12 TK ontological model . 104
4.13 TK contained in CAR example . 105
4.14 DEMOSL ATK metamodel . 106
4.15 DEMOSL EAR metamodel . 107
4.16 DEMOSL EAR in CAR as executor . 108
4.17 DEMOSL CAR metamodel . 109
4.18 CM modelling step 1 . 109
4.19 CM modelling step 2 . 109
4.20 DEMOSL PM metamodel 3.7 . 110
4.21 DEMOSL PM metamodel proposal . 111
4.22 DEMOSL PSD visualisation proposal . 111
4.23 DEMOSL TPD visualisation proposal . 112
4.24 DEMOSL GSK metamodel . 113
4.25 DEMOSL TPSK metamodel . 113
4.26 DEMOSL FM metamodel 3.7 . 115
4.27 DEMOSL FM data metamodel proposal 116
4.28 DEMOSL IFK metamodel . 117
4.29 DEMOSL ET metamodel . 117
4.30 ARD representation example . 119
4.31 The meaning of some . 124
4.32 CM-AM flow . 126

5.1 Connexio . 133

195

5.2 DemoWorld . 133
5.3 ModelWorld . 133
5.4 Xemod . 133
5.5 OCD profile, standard visualised by SEA as class extensions 138
5.6 SEA OCD toolbox . 140
5.7 toolbox profile OCD . 140
5.8 profile diagram OCD . 141
5.9 shape script OCD TK . 141
5.10 New Element Handling C# . 142
5.11 OCD Test model . 142
5.12 PSD Test model . 143
5.13 ARD Test model . 143
5.14 ARS Test path . 145
5.15 Tool in action, and its implementation . 146

6.1 Iteration A: OCD with test scripts . 151
6.2 Iteration A: Transaction Pattern Diagram (TPD) with test scripts 152
6.3 Iteration B: Object Fact Diagram (OFD) with implementation (Dutch model)154
6.4 Iteration B: Security Role Diagram (SRD) example (Dutch model) 155
6.5 Partial CM/OCD case C . 156
6.6 Simulation of a DEMO model . 164

7.1 Gamification Scene . 172
7.2 CM-AM flow . 176
7.3 PSD specification example . 177
7.4 Part of exchange metamodel . 178

A.1 EU Rental . 211

F.1 ARS Test path . 344
F.2 ARS Test Grammar Out . 361
F.3 ARS Test Grammar In . 362
F.4 ARS Test XML Out . 364
F.5 ARS Test XML DEMO . 366

G.1 SEA browser tree . 367
G.2 SEA browser aspect tree . 367
G.3 SEA browser diagram tree . 368
G.4 SEA browser diagram tree . 368
G.5 SEA CM profile . 369
G.6 SEA PM profile . 370
G.7 SEA FM profile . 371
G.8 SEA AM profile . 372
G.9 SEA ACD Toolbox . 373
G.10 SEA AFD Toolbox . 374

196

G.11 SEA ARS Toolbox . 375
G.12 SEA OCD Toolbox . 376
G.13 SEA OFD Toolbox . 377
G.14 SEA PSD Toolbox . 378
G.15 SEA SEC Toolbox . 379
G.16 SEA TPD Toolbox . 380
G.17 SEA WIS Toolbox . 380
G.18 SEA CM diagrams . 381
G.19 SEA PM diagrams . 381
G.20 SEA FM diagrams . 381
G.21 SEA AM diagrams . 382
G.22 DEMOSL CM OCD visualisation . 382
G.23 DEMOSL PSD visualisation proposal . 382

List of Tables

1 Paper [2] trail . 23
2 Paper [3] trail . 24
3 Paper [4] trail . 24
4 Paper [5] trail . 25
5 Paper [6] trail . 25
6 Paper [7] trail . 26
7 Paper [8] trail . 26

4.1 Action Rule references to DEMOSL 3.7 . 121
4.2 Element Property Types . 127
4.3 Diagram Entity and Property Types . 128

5.1 Summary of the findings on available tooling software 136

6.1 Added aspects in iterations . 163
6.2 Stakeholders and the found representations 163

C.1 Action Rule DB RAC A1/T1 new rq (event and access) 234
C.2 Action Rule DB RAC A1/T1 new rq (result) 235
C.3 Action Rule DB RAC A1/T1 rq . 235
C.4 Action Rule DB RAC A1/T2 st . 236
C.5 Action Rule DB RAC A1/T1 pm . 237
C.6 Action Rule DB RAC A3/T3 rq . 238
C.7 Action Rule DB RAC A3/T3 pm . 239

197

C.9 Action Rule DB RAC A3/T4 st A . 240
C.10 Action Rule DB RAC A3/T5 st . 241
C.11 Action Rule DB RAC A3/T4 st B . 242
C.12 Action Rule DB RAC A6/T6 pm . 243
C.13 Action Rule DB RAC A6/T6 st . 244
C.14 Action Rule DB RAC A7/T7 rq . 245
C.15 Action Rule DB RAC A7/T7 pm 1 . 246
C.16 Action Rule DB RAC A7/T7 pm 2 . 247
C.17 Action Rule DB RAC A7/T7 st . 248
C.18 Action Rule DB RAC A7/T6 rq . 249
C.19 Action Rule DB Volley A1/T1 rq . 250
C.20 Action Rule DB Volley A1/T1 rq . 251
C.21 Action Rule DM RAC A1/T1 new rq (event and assess) 252
C.22 Action Rule DM RAC A1/T1 new rq (result) 253
C.23 Action Rule DM RAC A1/T1 rq . 254
C.24 Action Rule DM RAC A1/T2 st . 255
C.25 Action Rule DM RAC A1/T1 pm . 256
C.26 Action Rule DM RAC A1/T1 new rq (event and assess) 257
C.27 Action Rule DM RAC A1/T1 new rq (result) 258
C.28 Action Rule DM RAC A1/T1 rq . 259
C.29 Action Rule DM RAC A1/T2 st . 260
C.30 Action Rule DM RAC A1/T1 pm . 261
C.31 Action Rule DM Pizza A1/T1 new rq . 262
C.32 Action Rule DM Pizza A1/T1 pm A . 263
C.33 Action Rule DM Pizza A1/T1 pm B . 264
C.34 Action Rule DM Pizza A1/T2 st . 265
C.35 Action Rule DM Pizza A1/T3 st . 266
C.36 Action Rule DM Pizza A1/T1 pm . 267

List of Equations

4.0 DEMO . 96
4.0 CM . 96
4.0 PM . 96
4.0 FM . 96
4.0 AM . 96
4.0 AR . 96
4.0 TK . 96

198

4.0 CMcs . 102
4.0 CMrel . 102
4.0 TKexistAR . 105
4.0 TKexistARi . 105
4.0 ARself . 105
4.0 ARaccATK . 106
4.0 FTinTK . 106
4.0 EARexs . 107
4.0 ARaccETK . 107
4.0 TKme . 108
4.0 EARxinCAR . 110
4.0 ATrel . 114
4.0 AT . 114
4.0 Event . 114
4.0 BE . 114
4.0 PT . 114
4.0 PKconTK . 117
4.0 ARDd . 120
4.0 ARDi . 120
4.0 ARDr . 120
4.0 ARDrel . 120
5.0 AR . 144
E.1 DEMO . 329
E.2 CM . 330
E.3 CMcs . 330
E.4 CMrel . 330
E.5 AR . 330
E.6 TK . 330
E.7 TKe . 330
E.8 TKi . 330
E.9 TKinATK . 331
E.10 TKinCAR . 331
E.11 TKinCARi . 331
E.12 TKinCARe . 331
E.13 TKexistAR . 331
E.14 TKexistARi . 331
E.15 ARself . 331
E.16 ARaccATK . 332
E.17 FTinTK . 332
E.18 EARinCAR . 332
E.19 EARexs . 332
E.20 ARaccETK . 332
E.21 TKme . 332
E.22 CARinCAR . 332

199

E.23 CARnocomCAR . 333
E.24 CARoverCAR . 333
E.25 CARcon . 333
E.26 EARxinCAR . 333
E.27 OCDd . 333
E.28 OCDe . 333
E.29 OCDr . 333
E.30 OCDrel . 333
E.31 TPTd . 334
E.32 TPTer . 334
E.33 BCTd . 334
E.34 BCTer . 334
E.35 PM . 335
E.36 PMcs . 335
E.37 PMrel . 335
E.38 PSDd . 335
E.39 PSDe . 335
E.40 PSDr . 335
E.41 TPDd . 335
E.42 TPDe . 335
E.43 TPDr . 335
E.44 GSKr . 336
E.45 TPSK . 336
E.46 GSKse . 336
E.47 TKtpsk . 336
E.48 TPSKtpsk . 336
E.49 FM . 337
E.50 FMcs . 337
E.51 FMrel . 337
E.52 OFDd . 337
E.53 OFDe . 337
E.54 OFDr . 337
E.55 OFDrel . 338
E.56 PKconTK . 338
E.57 AT . 338
E.58 ATrel . 338
E.59 FTinTK . 338
E.60 BE . 338
E.61 Event . 338
E.62 PT . 338
E.63 AM . 339
E.64 AMcs . 339
E.65 AMrel . 339
E.66 ARDd . 339

200

E.67 ARDi . 339
E.68 ARDr . 339
E.69 ARDrel . 339
F.0 TK . 341
F.0 AR . 341
F.0 CM . 342
F.0 TKe . 342
F.0 TKi . 343

Listings

4.1 Transaction kind . 105
5.1 Actor role, joining composite and elementary in a list for verification (see

eq. E.5) . 144
B.1 DEMOSL Reserved words . 213
B.2 Action Rule element Ids . 213
B.3 Action Rule element names . 214
B.4 Action Rule product kind formulation . 214
B.5 Action Rule Entity Variables . 214
B.6 Action Rule specification . 215
B.7 Action Rule event part . 215
B.8 Action Rule agendum . 216
B.9 Action Rule while clause . 216
B.10 Action Rule with clause . 217
B.11 Action Rule Assess part . 217
B.12 Action Rule fact kind formulation . 218
B.13 Action Rule attribute kind formulation . 218
B.14 Action Rule response part . 219
B.15 Action Rule intentions . 219
C.1 Action Rule element identification . 221
C.2 Action Rule Element names . 221
C.3 Grammar Reserved words . 222
C.4 Action Rule common rules . 222
C.5 Action Rule base types . 222
C.6 Action Rule specification . 224
C.7 Action Rule event part . 224
C.8 Action Rule assess part . 225
C.9 Action Rule response part . 225
C.10 Action Rule agendum part . 226

201

C.11 Action Rule with clause . 226
C.12 Action Rule for each clause . 227
C.13 Action Rule while clause . 227
C.14 Action Rule property variable . 228
C.15 Action Rule fact kind . 228
C.16 Action Rule attribute kind . 228
C.17 Action Rule intentions . 229
C.18 Action Rule variable names . 231
C.19 DB RAC A1/T1 new rq Original . 234
C.20 DB RAC A1/T1 new rq Adapted . 234
C.21 DB RAC A1/T1 new rq Original . 235
C.22 DB RAC A1/T1 new rq Adapted . 235
C.23 DB RAC A1/T1 rq Original . 235
C.24 DB RAC A1/T1 rq Adapted . 235
C.25 DB RAC A1/T2 st Original . 236
C.26 DB RAC A1/T2 st Adapted . 236
C.27 DB RAC A1/T1 pm Original . 237
C.28 DB RAC A1/T1 pm Adapted . 237
C.29 DB RAC A3/T3 rq Original . 238
C.30 DB RAC A3/T3 rq Adapted . 238
C.31 DB RAC A3/T3 pm Original . 239
C.32 DB RAC A3/T3 pm Adapted . 239
C.33 DB RAC A3/T4 st A Original . 240
C.34 DB RAC A3/T4 st A Adapted . 240
C.35 DB RAC A3/T5 st Original . 241
C.36 DB RAC A3/T5 st Adapted . 241
C.37 DB RAC A3/T4 st B Original . 242
C.38 DB RAC A3/T4 st B Adapted . 242
C.39 DB RAC A6/T6 pm Original . 243
C.40 DB RAC A6/T6 pm Adapted . 243
C.41 DB RAC A6/T6 st Original . 244
C.42 DB RAC A6/T6 st Adapted . 244
C.43 DB RAC A7/T7 rq Original . 245
C.44 DB RAC A7/T7 rq Adapted . 245
C.45 DB RAC A7/T7 pm A Original . 246
C.46 DB RAC A7/T7 pm A Adapted . 246
C.47 DB RAC A7/T7 pm B Original . 247
C.48 DB RAC A7/T7 pm B Adapted . 247
C.49 DB RAC A7/T7 st Original . 248
C.50 DB RAC A7/T7 st Adapted . 248
C.51 DB RAC A7/T6 rq Original . 249
C.52 DB RAC A7/T6 rq Adapted . 249
C.53 DB Volley A1/T1 rq Original . 250
C.54 DB Volley A1/T1 rq Adapted . 250

202

C.55 DB Volley A1/T1 pm Original . 251
C.56 DB Volley A1/T1 pm Adapted . 251
C.57 DM RAC A1/T1 new rq Original . 252
C.58 DM RAC A1/T1 new rq Adapted . 252
C.59 DM RAC A1/T1 new rq Original . 253
C.60 DM RAC A1/T1 new rq Adapted . 253
C.61 DM RAC A1/T1 rq Original . 254
C.62 DM RAC A1/T1 rq Adapted . 254
C.63 DM RAC A1/T2 st (sl14) Original . 255
C.64 DM RAC A1/T2 st (sl14) Adapted . 255
C.65 DM RAC A1/T1 pm Original . 256
C.66 DM RAC A1/T1 pm Adapted . 256
C.67 DM RAC A1/T1 new rq Original . 257
C.68 DM RAC A1/T1 new rq Adapted . 257
C.69 DM RAC A1/T1 new rq Original . 258
C.70 DM RAC A1/T1 new rq Adapted . 258
C.71 DM RAC A1/T1 rq Original . 259
C.72 DM RAC A1/T1 rq Adapted . 259
C.73 DM RAC A1/T2 st (sl46) Original . 260
C.74 DM RAC A1/T2 st (sl46) Adapted . 260
C.75 DM RAC A1/T1 pm Original . 261
C.76 DM RAC A1/T1 pm Adapted . 261
C.77 DM Pizza A1/T1 new rq Original . 262
C.78 DM Pizza A1/T1 new rq Adapted . 262
C.79 DM Pizza A1/T1 pm A Original . 263
C.80 DM Pizza A1/T1 pm A Adapted . 263
C.81 DM Pizza A1/T1 pm B Original . 264
C.82 DM Pizza A1/T1 pm B Adapted . 264
C.83 DM Pizza A1/T2 st Original . 265
C.84 DM Pizza A1/T2 st Adapted . 265
C.85 DM Pizza A1/T3 st Original . 266
C.86 DM Pizza A1/T3 st Adapted . 266
C.87 DM Pizza A1/T1 pm Original . 267
C.88 DM Pizza A1/T1 pm Adapted . 267
D.1 Schema specification . 269
D.2 Model specification . 269
D.3 Model attributes specification . 269
D.4 Model transactionkind collection . 270
D.5 Model elementary actor role collection . 270
D.6 Model aggregate transactionkind collection 271
D.7 Model composite actor role collection . 271
D.8 Model actor collection . 272
D.9 Model independent fact kind collection . 272
D.10 Model transaction proces step kind collection 273

203

D.11 Model attribute collection . 273
D.12 Model entity type collection . 274
D.13 Model action rule collection . 274
D.14 Model connection collection . 275
D.15 Model construction diagram collection . 275
D.16 Model process diagram collection . 276
D.17 Model fact diagram collection . 276
D.18 Model actor function diagram collection 277
D.19 Model transaction diagram collection . 277
D.20 Model action rule diagram collection . 278
D.21 Model validation result collection . 278
D.22 Positive integer . 279
D.23 Positive integer . 279
D.24 Location type . 280
D.25 Size type . 281
D.26 Line type . 281
D.27 Transaction kind . 282
D.28 Aggregate transaction kind . 283
D.29 Elementary actor role . 283
D.30 Composite actor role . 283
D.31 Transaction process step kind . 283
D.32 Independent fact kind . 284
D.33 Entity type . 284
D.34 Property type . 284
D.35 Attribute type . 284
D.36 Guid type . 285
D.37 Transaction kind guid . 285
D.38 Transaction step kind guid . 285
D.39 Independent fact kind guid . 286
D.40 Aggregated transaction kind guid . 286
D.41 Elementary actor role guid . 286
D.42 Composite actor role guid . 286
D.43 Entity type guid . 287
D.44 Actor guid . 287
D.45 Attribute type guid . 287
D.46 Action rule type guid . 288
D.47 Connection guid . 288
D.48 Diagram element guid . 288
D.49 Organisation construction diagram guid . 289
D.50 Process structure diagram guid . 289
D.51 Actor function diagram guid . 289
D.52 Object fact diagram guid . 290
D.53 Transaction process diagram guid . 290
D.54 Action rule diagram guid . 290

204

D.55 Transaction kind id . 291
D.56 Aggregated transaction kind id . 291
D.57 Actor role id . 291
D.58 Actor id . 292
D.59 Composite actor role id . 292
D.60 Fact kind id . 292
D.61 Product kind id . 293
D.62 Transaction sorts . 293
D.63 Cardinality . 293
D.64 General Step Kind . 294
D.65 Transaction kind name . 302
D.66 Actor role name . 302
D.67 Actor name . 302
D.68 Object class name . 303
D.69 Fact kind name . 303
D.70 Definite Entity Variable name . 303
D.71 Action rule name . 304
D.72 DEMO model name . 304
D.73 Contained in EAR . 304
D.74 EAR contained in CAR . 304
D.75 CAR contained in CAR . 305
D.76 ETK contained in CAR . 305
D.77 ETK contained in ATK . 305
D.78 Concerns . 306
D.79 Initiator EAR . 306
D.80 Initiator CAR . 306
D.81 Executor EAR . 307
D.82 Executor CAR . 307
D.83 Access AT to EAR . 307
D.84 Access AT to CAR . 307
D.85 Access TK to EAR . 308
D.86 Access TK to CAR . 308
D.87 Specialisation ET . 308
D.88 Aggregation ET . 309
D.89 Generalisation of ET . 309
D.90 Excludes ET . 309
D.91 Excludes relation . 309
D.92 Wait TPSK . 310
D.93 Initiation TPSK . 310
D.94 Role of EAR . 310
D.95 Role of CAR . 311
D.96 Connections (start) . 311
D.97 Connections (end) . 311
D.98 Transaction kind element . 311

205

D.99 Independant fact element . 312
D.100Transaction proces step kind element . 312
D.101Aggregate transaction kind element . 312
D.102Elementary actor role element . 312
D.103Composite actor role element . 312
D.104Actor element . 313
D.105Entity type element . 313
D.106Connection element . 313
D.107Validation results . 313
D.108Construction diagram . 314
D.109Process structure diagram . 317
D.110Transaction Process diagram . 318
D.111Process structure diagram . 319
D.112Action Rule Diagram . 320
D.113Actor function diagram . 322
D.114Action Rule Type . 324
D.115Event Part Type . 324
D.116Assess Part Type . 324
D.117Action Type . 325
D.118Flow Type . 325
D.119If Type . 325
D.120Block Type . 326
D.121For Each Type . 326
D.122Condition Type . 326
D.123Fact Model Reference Type . 327
D.124Extended info collection . 327
F.1 Elementary Transaction kind . 341
F.2 Aggregate Transaction kind . 341
F.3 Elementary Actor Role . 341
F.4 Composite Actor Role . 341
F.5 Transaction kind (see eq. E.6) . 342
F.6 Actor role (see eq. E.5) . 342
F.7 Construction Model (see eq. E.2) . 342
F.8 Transaction kind exclusion (see eq. E.6) . 342
F.9 Actor role exclusion (see eq. E.5) . 342
F.10 Executor role check (see eq. E.7) . 343
F.11 Executor role check (see eq. E.8) . 343
F.12 Action Rule Code Specification . 344
F.13 Action Rule Code Even Part . 344
F.14 Action Rule Code Assess Part . 344
F.15 Action Rule Code Response Part . 344
F.16 Action Rule Code Agendum Clause . 345
F.17 Action Rule Code When/With Clause . 345
F.18 Model convert CM . 345

206

F.19 Model convert PM . 345
F.20 Model convert FM . 346
F.21 Action Rule Creation Specification . 346
F.22 Action Rule Creation Even Part . 347
F.23 Action Rule Creation Assess Part . 347
F.24 Action Rule Creation Response Part . 348
F.25 Action Rule Creation Agendum Clause . 350
F.26 Action Rule Creation With Clause . 351
F.27 Action Rule Creation For Each Clause . 352
F.28 Action Rule Creation While Clause . 353
F.29 Action Rule Creation Property Variable 354
F.30 Action Rule Creation Fact Kind . 354
F.31 Action Rule Creation Attribute Kind . 355
F.32 Action Rule Creation Intentions . 357
F.33 Action Rule Creation Variables . 357
F.34 Action Rule to XML Specification . 362
F.35 Action Rule to XML Agendum Clause . 362
F.36 Action Rule to XML With Clause . 363
F.37 Action Rule Model to XML Specification 364
F.38 Action Rule Model to XML Even Part . 365
F.39 Action Rule Model to XML Assess Part 365
F.40 Action Rule Model to XML For Each Clause 365
G.1 Transaction Kind shapescript . 383
G.2 Aggregate Transaction Kind shapescript 388
G.3 Elementary Actor Role shapescript . 389
G.4 Composite Actor Role shapescript . 395
G.5 Step Initiation shapescript . 397
G.6 Transaction Step shapescript . 397
G.7 Entity shapescript . 404
G.8 Derived Entity type shapescript . 406
G.9 Property Type shapescript . 406
G.10 Action Rule Containment shapescript . 407
G.11 Action Rule When shapescript . 408
G.12 Action Rule While shapescript . 409
G.13 Action Rule Assess shapescript . 409
G.14 Action Rule Then shapescript . 409
G.15 Action Rule Else shapescript . 410
G.16 Workinstruction shapescript . 410
G.17 Duplicate shapescript . 411
G.18 Security Function shapescript . 420
G.19 Security Role shapescript . 421
G.20 Actor shapescript . 422
G.21 Boundary shapescript . 422
G.22 Competence shapescript . 423

207

G.23 Interview Line shapescript . 424
G.24 Conversion Rule shapescript . 424
G.25 Initiator shapescript . 424
G.26 Executor shapescript . 425
G.27 Bank Access shapescript . 426
G.28 ContainedIn shapescript . 427
G.29 Call shapescript . 428
G.30 Wait shapescript . 429
G.31 Step rule shapescript . 430
G.32 Reference shapescript . 432
G.33 Aggregation shapescript . 433
G.34 Specialisation shapescript . 434
G.35 Generalisation shapescript . 434
G.36 Exclude shapescript . 435
G.37 Precedence shapescript . 436
G.38 Preclusion shapescript . 437
G.39 Concerns shapescript . 438
G.40 With clause shapescript . 439
G.41 Link CM Hidden shapescript . 440
G.42 Describes shapescript . 441
G.43 Executed By shapescript . 441
G.44 Managed By shapescript . 442
G.45 Measurement shapescript . 443
G.46 Measuring shapescript . 444
G.47 Needs shapescript . 445
G.48 Process Order shapescript . 446
G.49 Role Of shapescript . 447
G.50 Supporting shapescript . 448
G.51 Trigger shapescript . 449
G.52 In interview shapescript . 450

208

Part IV

Appendix

209

Appendix A

Validation Example

The model in this chapter is used as a validation model. This model has all aspects of
the DEMOSL proposal and has all faults that can be detected. Due to the complexity of
the specification language some errors are duplicated in the model to force other errors.

Figure A.1: EU Rental

The Organisation Construction Diagram (OCD) of the often used EU Rental case can
already be modelled using Sparx Enterprise Architect (SEA). We used the tool to model
EU Rental in fig. A.1 as modelled in the example of ModelWorld 1.
The visualisation and the model of the OCD comply to the DEMO Specification Language
(DEMOSL) specifications. The connections and elements are drawn within specifications

1[98] - Lambertus Johannes Hommes. ModelWorld; http://ModelWorld.nl. 2015

211

of the visualisation. The validation has been run on this model and has returned no errors
in this model.

212

Appendix B

DEMOSL 3.7 Grammar

// DEMOSL 3.7 Slide 5 line 20-23

// RESERVED WORDS

// Reserved words are terms that have a definite meaning in DEMO. They are

always underlined. Next to the ’present tense intention terms’ and the ’

perfect tense intention terms’ (specified above), the next reserved words

exist: new, performer, addressee, et (event time), st (settlement time)

request promise state accept decline quit reject stop revoke allow refuse

requested promised stated accepted declined quitted rejected stopped revoked

allowed refused

new, performer, addressee, et, st

Listing B.1: DEMOSL Reserved words

// DEMOSL 3.7 Slide 4 line 1

// transaction kind id= "T", {digit}-; //Example: T17

transaction_kind_id: TransactionPrefix Number ;

// DEMOSL 3.7 Slide 4 line 2

// aggregate transaction kind id= "AT", {digit}-; //Example: AT2

aggregate_transaction_kind_id: AggregateTransactionPrefix Number;

// DEMOSL 3.7 Slide 4 line 3

// actor role id= "A", {digit}-; //Example: A17

actor_role_id: ActorPrefix Number;

// DEMOSL 3.7 Slide 4 line 4

// composite actor role id= "CA", {digit}-; //Example: CA1

composite_actor_role_id: CompositeActorPrefix Number;

// DEMOSL 3.7 Slide 4 line 5

// fact kind id= "F", {digit}-; //Example: F17

fact_kind_id: FactPrefix Number;

213

// DEMOSL 3.7 Slide 4 line 6

// product kind id= "P", {digit}-; //Example: P17

product_kind_id: ProductPrefix Number;

Listing B.2: Action Rule element Ids

// DEMOSL 3.7 Slide 4 line 7

// transaction kind name = {lower case letter}-, {" ", {lower case letter}}; //

Example: rental concluding

transaction_kind_name : Lower_case_word (Lower_case_word)*;

// DEMOSL 3.7 Slide 4 line 8

// actor role name = {lower case letter}-, {" ", {lower case letter}}; //

Example: rental concluder

actor_role_name : Lower_case_word (Lower_case_word)*;

// DEMOSL 3.7 Slide 4 line 9

// object class name = {upper case letter}-, {" ", {upper case letter}}; //

Examples: RENTAL, CAR GROUP

object_class_name : Upper_case_word (Upper_case_word)*;

// DEMOSL 3.7 Slide 4 line 10

// fact kind name = {lower case letter}-, {" ", {lower case letter}}; //

Examples: member, daily rental rate

fact_kind_name : Lower_case_word (Lower_case_word)*;

Listing B.3: Action Rule element names

// DEMOSL 3.7 Slide 5 line 12-15

// product kind formulation= entity variable | property variable, "is", perfect

tense sentence;

// Example: Rental is contracted

// Example: the first fee of Membership is paid

// Example: the fee of Membership in Year is paid

product_kind_formulation:

(entity_variable

| property_variable)

’is’

perfect_tense_sentence

;

Listing B.4: Action Rule product kind formulation

// DEMOSL 3.7 Slide 4 line 11

entity_variable : definite_entity_variable | indefinite_entity_variable |

property_variable;

// DEMOSL 3.7 Slide 4 line 12-14

214

// definite entity variable = upper case letter, {lower case letter}, {" ",

upper case letter, {lower case letter}} | "[", {lower case letter}-, {" ",

{lower case letter}}, "]"

// Examples: Person, [person], Car Group, [car group], Year, [year]

definite_entity_variable:

Capital_case_word (Capital_case_word)*

| BracketPre Lower_case_word (Lower_case_word)* BracketPost;

// DEMOSL 3.7 Slide 4 line 15-16

// indefinite entity variable = "some", object class name; //Examples: some

PERSON, some YEAR

indefinite_entity_variable : SomeKeyWord object_class_name;

// DEMOSL 3.7 Slide 4 line 17-20

// property variable = "the", property kind name, "of" | "in" | "on", definite

entity variable;

// Example: the member of Membership, the member of [membership]

// Example: the daily rental rate of Car Group in Year, the daily rental rate

of [car group] in [year]

// Example: the number of cars in Car Group on Day, the number of cars in [car

group] on [day]

property_variable:

’the’ property_kind_name

(’of’ | ’in’ | ’on’)

definite_entity_variable;

// DEMOSL 3.7 Slide 4 line 21-22

// product variable = < definite entity variable regarding a product >;

// Examples: Membership, [membership], Rental, [rental]

product_variable : ’<definite entity variable regarding a product>’;

Listing B.5: Action Rule Entity Variables

// DEMOSL 3.7 Slide 14 line 1

// action rule specification = event part, assess part, response part;

action_rule_specification :

event_part

assess_part

response_part

;

Listing B.6: Action Rule specification

// DEMOSL 3.7 Slide 14 line 2

// event part= agendum clause, [while clause], [with clause];

event_part:

agendum_clause

(while_clause)?

215

(with_clause)?

;

Listing B.7: Action Rule event part

// DEMOSL 3.7 Slide 14 line 3

// agendum clause = "when", new transaction reference, "is", perfect tense

intention;

agendum_clause :

’when’

new_transaction_reference

’is’

perfect_tense_intention

;

Listing B.8: Action Rule agendum

// DEMOSL 3.7 Slide 14 line 4

// while clause = "while", {transaction reference, "is", perfect tense

intention, {with clause};}-;

while_clause :

’while’

(transaction_reference

’is’

perfect_tense_intention

(with_clause)

)+;

// DEMOSL 3.7 Slide 14 line 13

// transaction reference = transaction kind name, "for", product object

reference;

transaction_reference:

transaction_kind_name

’for’

product_object_reference

;

// DEMOSL 3.7 Slide 14 line 14

// new transaction reference = transaction kind name, "for", ["new"], product

object reference;

new_transaction_reference:

transaction_kind_name

’for’

(’new’)?

product_object_reference;

Listing B.9: Action Rule while clause

216

// DEMOSL 3.7 Slide 14 line 5

// with clause = "with", {property kind formulation}-;

with_clause :

’with’

(property_kind_formulation)+;

// DEMOSL 3.7 Slide 5 line 2

// property kind formulation = property variable, "is", object variable;

property_kind_formulation :

property_variable

’is’

object_variable

;

// DEMOSL 3.7 Slide 5 line 3-5

// Example: the member of Membership is Person

// Example: the daily rental rate of Car Group in Year is Money

// Example: the son of Person is some PERSON

Listing B.10: Action Rule with clause

// DEMOSL 3.7 Slide 14 line 6

// assess part = justice sub part, sincerity sub part, truth sub part;

assess_part:

justice_sub_part

sincerity_sub_part

truth_sub_part

;

// DEMOSL 3.7 Slide 14 line 7

// justice sub part = "justice:", "<no specific condition>" | {fact kind

formulation}-;

justice_sub_part:

’justice:’

(’<no specific condition>’

| (fact_kind_formulation)+

)

;

// DEMOSL 3.7 Slide 14 line 8

// sincerity sub part = "sincerity:", "<no specific condition>" | {fact kind

formulation}-;

sincerity_sub_part :

’sincerity:’

(’<no specific condition>’

| (fact_kind_formulation)+

)

;

217

// DEMOSL 3.7 Slide 14 line 9

// truth sub part = "truth:", "<no specific condition>" | {fact kind

formulation}-;

truth_sub_part :

’truth:’

(NoSpecificCondition

| (fact_kind_formulation)+

)

;

Listing B.11: Action Rule Assess part

// DEMOSL 3.7 Slide 5 line 1

// fact kind formulation = property kind formulation | attribute kind

formulation | product kind formulation;

fact_kind_formulation :

property_kind_formulation

| attribute_kind_formulation

| product_kind_formulation

;

Listing B.12: Action Rule fact kind formulation

// DEMOSL 3.7 Slide 5 line 6

// attribute kind formulation = attribute variable, "is equal to" | "is greater

 than" | "is less than", value variable;

attribute_kind_formulation :

attribute_variable

(

’is equal to’

| ’is greater than’

| ’is less than’

)

value_variable

;

// DEMOSL 3.7 Slide 5 line 7

// attribute variable = < property variable regarding an abstract object (=

value) >;

attribute_variable :

’<property variable regarding an abstract object (: value)>’

;

// DEMOSL 3.7 Slide 5 line 8

// value variable = < object variable regarding an abstract object (= value) >

| value;

value_variable:

218

’<object variable regarding an abstract object (: value)>’

| value

;

// DEMOSL 3.7 Slide 5 line 9

// value = [dimension, ":"], (real | integer, unit) | boolean; < Cf. slide 15 >

value :

(dimension ’:’)?

(((

Real

| Integer

) Unit

)

| Boolean

)

;

// DEMOSL 3.7 Slide 5 line 10-11

// Example: LENGTH: 2.4 m

// Example: 2.4 m

Listing B.13: Action Rule attribute kind formulation

// DEMOSL 3.7 Slide 14 line 10-11

// response part = "if", "complying with", present tense intention, "is

considered justifiable", "then", action clause, ["else" action clause];

response_part :

’if’ ’complying with’

present_tense_intention

’is considered justifiable’

’then’ action_clause

(’else’ action_clause)?

;

// DEMOSL 3.7 Slide 14 line 12

// action clause = {present tense intention, transaction reference, {with

clause}};

action_clause :

present_tense_intention

transaction_reference

(with_clause)?

;

Listing B.14: Action Rule response part

// DEMOSL 3.7 Slide 5 line 16-17

// present tense intention = "request" | "promise" | "state" | "accept" | "

decline" | "quit" | "reject" | "stop" | "revoke" | "allow" | "refuse";

219

present_tense_intention : ’request’ | ’promise’ | ’state’ | ’accept’ | ’decline

’ | ’quit’ | ’reject’ | ’stop’ | ’revoke’ | ’allow’ | ’refuse’;

// DEMOSL 3.7 Slide 5 line 18-19

// perfect tense intention = "requested" | "promised" | "stated" | "accepted" |

"declined" | "quitted" | "rejected" | "stopped" | "revoked" | "allowed" |

"refused";

perfect_tense_intention : ’requested’ | ’promised’ | ’stated’ | ’accepted’ | ’

declined’ | ’quitted’ | ’rejected’ | ’stopped’ | ’revoked’ | ’allowed’ | ’

refused’;

Listing B.15: Action Rule intentions

220

Appendix C

Grammar Metamodel

C.1 Element identification

transaction_kind_id:

TransactionKindId

;

aggregate_transaction_kind_id:

AggregateTransactionKindId

;

actor_role_id:

ActorKindId

;

composite_actor_role_id:

CompositeActorKindId

;

fact_kind_id:

FactKindId

;

product_kind_id:

ProductKindId

;

Listing C.1: Action Rule element identification

C.2 Element Names

221

transaction_kind_name : Lower_case_word (Lower_case_word)*;

actor_role_name : Lower_case_word (Lower_case_word)*;

object_class_name : Upper_case_word (Upper_case_word)*;

fact_kind_name : Lower_case_word (Lower_case_word)*;

Listing C.2: Action Rule Element names

C.3 Reserved Words

/* Cautious words */

/* for new of in on the */

Listing C.3: Grammar Reserved words

Within a grammar the whitespace and readability extra lines need to be skipped for
finding the information in the rule text.

COMMENT : ’

WHITESPACE: [\r\t\u000C\n]+ -> skip ;

Listing C.4: Action Rule common rules

These types are needed to recognise the keywords in the grammar.

SomeKeyword: ’some’ ;

RuleKeyword: ’rule’ ;

WhenKeyword: ’when’ ;

WhileKeyword: ’while’ ;

WithKeyword: ’with’ ;

IsKeyword: ’is’ ;

ForKeyword: ’for’ ;

EachKeyword: ’each’ ;

NewKeyword: ’new’ ;

OfKeyword: ’of’ ;

InKeyword: ’in’ ;

OnKeyword: ’on’ ;

TheKeyword: ’the’ ;

IfKeyword: ’if’ ;

222

ElseKeyword: ’else’ ;

ThenKeyword: ’then’ ;

SetKeyword: ’set’ ;

RequestKeyword: ’request’ ;

PromiseKeyword: ’promise’ ;

StateKeyword: ’state’ ;

AcceptKeyword: ’accept’ ;

DeclineKeyword: ’decline’ ;

QuitKeyword: ’quit’ ;

RejectKeyword: ’reject’ ;

StopKeyword: ’stop’ ;

RevokeKeyword: ’revoke’ ;

AllowKeyword: ’allow’ ;

RefuseKeyword: ’refuse’ ;

ExecuteKeyword: ’execute’ ;

RequestedKeyword: ’requested’ ;

PromisedKeyword: ’promised’ ;

StatedKeyword: ’stated’ ;

AcceptedKeyword: ’accepted’ ;

DeclinedKeyword: ’declined’ ;

QuittedKeyword: ’quitted’ ;

RejectedKeyword: ’rejected’ ;

StoppedKeyword: ’stopped’ ;

RevokedKeyword: ’revoked’ ;

AllowedKeyword: ’allowed’ ;

RefusedKeyword: ’refused’ ;

ExecutedKeyword: ’executed’ ;

RequestAbKeyword: ’rq’ ;

PromiseAbKeyword: ’pm’ ;

StateAbKeyword: ’st’ ;

AcceptAbKeyword: ’ac’ ;

DeclineAbKeyword: ’dc’ ;

QuitAbKeyword: ’qt’ ;

RejectAbKeyword: ’rj’ ;

StopAbKeyword: ’sp’ ;

RevokeAbKeyword: ’rv’ ;

AllowAbKeyword: ’al’ ;

RefuseAbKeyword: ’rf’ ;

ExecuteAbKeyword: ’ex’ ;

TrueKeyword: ’true’ ;

FalseKeyword: ’false’ ;

223

AccessKeyword: ’assess’ ;

JusticeKeyword: ’justice’ ;

SincirityKeyword: ’sincerity’ ;

TruthKeyword: ’truth’ ;

CompareEqualKeyword: ’equal’ ;

CompareGreaterKeyword: ’greater’ ;

CompareLessKeyword: ’less’ ;

CompareThanKeyword: ’than’ ;

CompareToKeyword: ’to’ ;

CompareOrKeyword: ’or’ ;

CompareAndKeyword: ’and’ ;

TransactionKindId: ’T’([0-9]+’-’)?[0-9]+ ;

CompositeActorKindId: ’CA’([0-9]+’-’)?[0-9]+ ;

AggregateTransactionKindId: ’AT’([0-9]+’-’)?[0-9]+ ;

FactKindId: ’F’([0-9]+’-’)?[0-9]+ ;

ProductKindId: ’P’([0-9]+’-’)?[0-9]+ ;

ActorKindId: ’A’([0-9]+’-’)?[0-9]+ ;

DoubleQuote: ’"’ ;

BracketPre: ’[’ ;

BracketPost: ’]’ ;

LineEndKeyword: ’;’ ;

fragment Digit : [0-9] ;

fragment Digits : Digit+ ;

Integer: (’+’|’-’)? Digits;

Real: (’+’|’-’)? Digits ’.’ Digits;

Name: [a-zA-Z_][a-zA-Z0-9_]* ;

Lower_case_word: [a-z]+ ;

Upper_case_word: [A-Z]+;

Listing C.5: Action Rule base types

C.4 Grammar core

action_rule_specification :

RuleKeyword

bracketed_name

event_part

assess_part

response_part

;

Listing C.6: Action Rule specification

event_part:

agendum_clause

224

(while_clause)?

;

Listing C.7: Action Rule event part

assess_part :

(

AccessKeyword

justice_sub_part

sincerity_sub_part

truth_sub_part

)?

;

justice_sub_part :

(

JusticeKeyword ’:’

(fact_kind_formulation)+

)?

;

sincerity_sub_part :

(

SincirityKeyword ’:’

(fact_kind_formulation)+

)?

;

truth_sub_part :

(

TruthKeyword ’:’

(

foreach_clause

’

 fact_kind_formulation+

 ’}’ \r\n");}

 | fact_kind_formulation+

)

)?

 ;

Listing C.8: Action Rule assess part

response_part :

IfKeyword ’complying with’

present_tense_intention

’is considered justifiable’

ThenKeyword

225

(

foreach_clause ’’

| action_clause+

)

(ElseKeyword

action_clause+)?

;

action_clause :

present_tense_intention

transaction_reference

transaction_step_reference

(with_clause)*

;

Listing C.9: Action Rule response part

agendum_clause :

WhenKeyword

transaction_reference

IsKeyword

perfect_tense_intention

transaction_step_reference

(with_clause)*

;

Listing C.10: Action Rule agendum part

with_clause:

WithKeyword

(property_kind_formulation)+

;

property_kind_formulation :

property_variable

IsKeyword

(

(SomeKeyword)? bracketed_name

| property_variable

| SetKeyword OfKeyword

bracketed_name

’

 (with_clause)+

 ’}’ ");}

) ’;’

 ;

Listing C.11: Action Rule with clause

226

foreach_clause:

ForKeyword EachKeyword

bracketed_name

InKeyword

’

 property_variable

 ’}’ ");}

 ;

Listing C.12: Action Rule for each clause

while_clause:

WhileKeyword

(

foreach_clause

’

 (while_subclause)+

 ’}’ ");}

 | while_subclause+

)

 ;

while_subclause:

 transaction_reference IsKeyword perfect_tense_intention

 transaction_step_reference

 (with_clause)*

 ;

transaction_step_reference:

 ’(’

 transaction_kind_id

 ’/’

 intention_abbreviation

 ’)’

 ;

transaction_reference :

 bracketed_name

 ForKeyword

 (NewKeyword)?

 bracketed_name

 ;

Listing C.13: Action Rule while clause

227

property_variable :

TheKeyword

bracketed_name

(’of’ | ’in’ | ’on’)

bracketed_name

((’in’)

bracketed_name

)?

;

Listing C.14: Action Rule property variable

fact_kind_formulation :

property_kind_formulation

| attribute_kind_formulation

;

Listing C.15: Action Rule fact kind

attribute_kind_formulation :

property_variable

IsKeyword

comparison

value_variable

’;’

;

comparison:

operator CompareOrKeyword comparison

| operator CompareAndKeyword comparison

| operator

;

operator:

CompareEqualKeyword CompareToKeyword

| CompareGreaterKeyword CompareThanKeyword

| CompareLessKeyword CompareThanKeyword

| InKeyword

;

value_variable :

property_variable

| value

;

value :

228

(dimension ’:’)?

((Real

| Integer

) unit) | boolean

;

dimension:

name

;

boolean:

TrueKeyword

| FalseKeyword

;

unit:

name

;

Listing C.16: Action Rule attribute kind

present_tense_intention :

’request’

| ’promise’

| ’state’

| ’accept’

| ’decline’

| ’quit’

| ’reject’

| ’stop’

| ’revokerequest’

| ’revokerequestallow’

| ’revokerequestrefuse’

| ’revokepromise’

| ’revokepromiseallow’

| ’revokepromiserefuse’

| ’revokedeclare’

| ’revokedeclareallow’

| ’revokedeclarerefuse’

| ’revokeaccept’

| ’revokeacceptallow’

| ’revokeacceptrefuse’

| ’execute’

;

intention_abbreviation :

’rq’

229

| ’pm’

| ’st’

| ’ac’

| ’dc’

| ’qt’

| ’rj’

| ’sp’

| ’rvrq’

| ’rvra’

| ’rvrr’

| ’rvpq’

| ’rvpa’

| ’rvpr’

| ’rvdq’

| ’rvda’

| ’rvdr’

| ’rvaq’

| ’rvaa’

| ’rvar’

| ’ex’

;

perfect_tense_intention :

’requested’

| ’promised’

| ’stated’

| ’accepted’

| ’declined’

| ’quitted’

| ’rejected’

| ’stopped’

| ’revokedrequest’

| ’revokerequestallowed’

| ’revokerequestrefused’

| ’revokedpromise’

| ’revokepromiseallowed’

| ’revokepromiserefused’

| ’revokeddeclare’

| ’revokedeclareallowed’

| ’revokedeclarerefused’

| ’revokedaccept’

| ’revokeacceptallowed’

| ’revokeacceptrefused’

| ’executed’

;

Listing C.17: Action Rule intentions

230

stringed_name: DoubleQuote name DoubleQuote ;

bracketed_name:

BracketPre name

BracketPost

| name

;

name:

(

SomeKeyword

| IsKeyword

| SomeKeyword

| RuleKeyword

| WhenKeyword

| WhileKeyword

| WithKeyword

| IsKeyword

| ForKeyword

| EachKeyword

| NewKeyword

| OfKeyword

| InKeyword

| OnKeyword

| IfKeyword

| ThenKeyword

| ElseKeyword

| SetKeyword

| TransactionKindId

| CompositeActorKindId

| AggregateTransactionKindId

| FactKindId

| ProductKindId

| ActorKindId

| RequestKeyword

| PromiseKeyword

| StateKeyword

| AcceptKeyword

| DeclineKeyword

| QuitKeyword

| RejectKeyword

| StopKeyword

| RevokeKeyword

231

| AllowKeyword

| RefuseKeyword

| ExecuteKeyword

| RequestedKeyword

| PromisedKeyword

| StatedKeyword

| AcceptedKeyword

| DeclinedKeyword

| QuittedKeyword

| RejectedKeyword

| StoppedKeyword

| RevokedKeyword

| AllowedKeyword

| RefusedKeyword

| ExecutedKeyword

| RequestAbKeyword

| PromiseAbKeyword

| StateAbKeyword

| AcceptAbKeyword

| DeclineAbKeyword

| QuitAbKeyword

| RejectAbKeyword

| StopAbKeyword

| RevokeAbKeyword

| AllowAbKeyword

| RefuseAbKeyword

| ExecuteAbKeyword

| TheKeyword

| AccessKeyword

| JusticeKeyword

| SincirityKeyword

| TruthKeyword

| CompareEqualKeyword

| CompareGreaterKeyword

| CompareLessKeyword

| CompareThanKeyword

| CompareToKeyword

| CompareOrKeyword

| CompareAndKeyword

| TrueKeyword

| FalseKeyword

| Name

) (name)*

;

232

Listing C.18: Action Rule variable names

C.5 Action Rule References

All action rules that have been used in specifications and course material, that has been
found, have been investigated and tested in the new rule specifications. All rules that
needed adaptation have green additions and red deletions.

233

C.5.1 DB RAC A1/T1 new rq

This example has been taken from ”DEMO Bachelor+ 3.5 M3 p slide 41-42”

when rental concluding for new Rental

is requested (T1/rq)

with

the starting day ... some day

the ending day ... some day

the renter ... some person

the payer ... some person

the driver ... some person

the payer ... some person

the car ... car group

the issuing location ... some

branch

the return location ... some

branch

assess

justice:

the performer ... of Rental;

the addressee ... rental

concluder;

sincerity: <no specific condition>
truth:

the starting day of Rental is in

the Rental Horizon of the year

of the starting day of Rental

;

the ending day ... of Rental;

the ending day ... of Rental;

the duration ... day of Rental;

the number of cars in the car

group of Rental on every day

in the rental period of Rental

is greater than zero

Listing C.19: DB RAC A1/T1 new rq
Original

rule DB RAC A1 T1 new rq

when rental concluding for new Rental

is requested (T1/rq)

with

the starting day ... some day;

the ending day ... some day;

the renter ... some person;

the payer ... some person;

the driver ... some person;

the payer ... some person;

the car ... car group;

the issuing location ... some

branch;

the return location ... some

branch;

assess

justice:

the performer ... of Rental;

the addressee ... of rental;

truth:

the starting day of Rental is in

the [Rental Horizon of the

year of the starting day] of

Rental;

the ending day ... [Rental ...

day] of Rental;

the ending day ... of Rental;

the duration ... the [max ... day

] of Rental;

the [number of cars in the car

group of Rental on every day

in the rental period] of

Rental is greater than 0

cars;

Listing C.20: DB RAC A1/T1 new rq
Adapted

Table C.1: Action Rule DB RAC A1/T1 new rq (event and access)

234

if complying with the assessment is

considered justifiable

then

request rental paying for Rental

[T2/rq]

with

the addressee of the request is

the payer of Rental;

the requested production day of

rental paying for Rental is

less than or equal to the

starting day of Rental;

the requested paid rental

amount of Rental is equal

to the rental charge of

Rental;

else

decline rental concluding for

Rental [T1/dc]

with the addressee of the

decline is the renter of

Rental

Listing C.21: DB RAC A1/T1 new rq
Original

if complying with request is

considered justifiable

then

request rental paying for Rental

(T2/rq)

with

the addressee of the request is

the payer of Rental;

the [requested production day

of rental paying] of Rental

is the starting day of

Rental;

the requested paid rental

amount of Rental is the

rental charge of Rental;

else

decline rental concluding for

Rental (T1/dc)

with

the addressee of the decline is

the renter of Rental;

Listing C.22: DB RAC A1/T1 new rq
Adapted

Table C.2: Action Rule DB RAC A1/T1 new rq (result)

C.5.2 DB RAC A1/T1 rq

This example has been taken from ”DEMO Bachelor+ 3.5 M3 p slide 43”

Listing C.23: DB RAC A1/T1 rq Original Listing C.24: DB RAC A1/T1 rq Adapted

Table C.3: Action Rule DB RAC A1/T1 rq

235

C.5.3 DB RAC A1/T2 st

This example has been taken from ”DEMO Bachelor+ 3.5 M3 p slide 44”

when rental paying for Rental is

stated (T2/st)

assess

justice:

the performer of the statement is

the renter of Rental;

the addressee of the statement is

the rental concluder of

Rental;

sincerity: <no specific condition>

truth:

the stated paid rental amount of

Rental is equal to the

promised paid rental amount

of Rental;

the stated production day of

rental paying for Rental is

equal to the promised

production day of rental

paying for Rental

if complying with the assessment is

considered justifiable

then

accept rental paying for Rental [T2

/ac]

with

the addressee of the acceptance

is the renter of Rental

else

reject rental paying for Rental [T2

/rj]

with

the addressee of the rejection is

the renter of Rental

Listing C.25: DB RAC A1/T2 st Original

rule DB RAC A1 T2 st

when rental paying for Rental is

stated (T2/st)

assess

justice:

the performer of the statement is

the renter of Rental;

the addressee of the statement is

the rental concluder of

Rental;

truth:

the stated paid rental amount of

Rental is equal to the

promised paid rental amount

of Rental;

the stated production day of

rental paying for Rental is

equal to the promised

production day of rental

paying for Rental;

if complying with state is considered

justifiable

then

accept rental paying for Rental (T2

/ac)

with

the addressee of the acceptance

is the renter of Rental;

else

reject rental paying for Rental (T2

/rj)

with

the addressee of the rejection is

the renter of Rental;

Listing C.26: DB RAC A1/T2 st Adapted

Table C.4: Action Rule DB RAC A1/T2 st

236

C.5.4 DB RAC A1/T1 pm

This example has been taken from ”DEMO Bachelor+ 3.5 M3 p slide 45”

when rental concluding for Rental is

promised (T1/pm)

while rental paying for Rental is

accepted (T2/ac)

assess

justice:

the performer of the promise is

the rental concluder of Rental

;

the addressee of the promise is

the renter of Rental;

sincerity: <no specific condition>

truth: <no specific condition>

if complying with the assessment is

considered justifiable

then

execute rental concluding for

Rental [T1/ex]

state rental concluding for Rental

[T1/st]

with

the addressee of the statement is

the renter of Rental

Listing C.27: DB RAC A1/T1 pm
Original

rule DB RAC A1 T1 pm

when rental concluding for Rental is

promised (T1/pm)

while rental paying for Rental is

accepted (T2/ac)

assess

justice:

the performer of the promise is

the rental concluder of Rental

;

the addressee of the promise is

the renter of Rental;

if complying with promise is

considered justifiable

then

execute rental concluding for

Rental (T1/ex)

state rental concluding for Rental

(T1/st)

with

the addressee of the statement is

the renter of Rental;

Listing C.28: DB RAC A1/T1 pm
Adapted

Table C.5: Action Rule DB RAC A1/T1 pm

237

C.5.5 DB RAC A3/T3 rq

This example has been taken from ”DEMO Bachelor+ 3.5 M3 p slide 47”

when car issuing for Rental is

requested (T3/rq)

assess

justice:

the performer ... Rental;

the addressee ... issuer;

sincerity: <no specific condition>

truth: Rental is concluded; (T1/ac)

the driving license of the driver

of Rental is valid;

the starting day of Rental is less

than or equal to Today;

the number of cars in the car

group of Rental on Today is

greater than zero

if complying with the assessment is

considered justifiable

then

promise car issuing for Rental [T3/

pm]

with the addressee ... Today;

request car returning for Rental

[T4/rq]

with

the addressee ... Rental;

the requested ... Rental

else

decline pick up for Rental [T3/dc]

with

the addressee of the decline is

the driver of Rental;

Listing C.29: DB RAC A3/T3 rq Original

rule DB RAC A3 T3 rq

when car issuing for Rental is

requested (T3/rq)

while rental concluding for Rental

is accepted (T1/ac)

assess

justice:

the performer ... Rental;

the addressee ... issuer of Car;

truth:

the [validity of the driving

license of the driver] of

Rental is equal to true;

the starting day of Rental is

less than or equal to the

current day of Today;

the number of cars in the car

group of Rental on Today is

greater than 0

cars;

if complying with request is

considered justifiable

then

promise car issuing for Rental (T3/

pm)

with the addressee ... Today;

request car returning for Rental

(T4/rq)

with

the addressee ... Rental;

the requested ... Rental;

else

decline pick up for Rental (T3/dc)

with

the addressee of the decline is

the driver of Rental;

Listing C.30: DB RAC A3/T3 rq Adapted

Table C.6: Action Rule DB RAC A3/T3 rq

238

C.5.6 DB RAC A3/T3 pm

This example has been taken from ”DEMO Bachelor+ 3.5 M3 p slide 48”

when car issuing for Rental is

promised (T3/pm)

while car returning for Rental is

promised (T4/pm)

assess

justice:

the performer of the promise is

the car issuer of Rental;

the addressee of the promise is

the driver of Rental;

sincerity: <no specific condition>

truth:

there is a Car in the car group of

Rental on Today;

if complying with the assessment is

considered justifiable

then

execute car issuing for Rental [T3/

ex]

state car issuing for Rental [T3/st

]

with

the addressee of the statement is

the driver of Rental;

the car of Rental is Car

Listing C.31: DB RAC A3/T3 pm
Original

rule DB RAC A3 T3 pm

when car issuing for Rental is

promised (T3/pm)

while car returning for Rental is

promised (T4/pm)

assess

justice:

the performer of the promise is

the car issuer of Rental;

the addressee of the promise is

the driver of Rental;

truth:

the car of car group is in the

Rental of Today;

if complying with promise is

considered justifiable

then

execute car issuing for Rental (T3/

ex)

state car issuing for Rental (T3/st

)

with

the addressee of the statement is

the driver of Rental;

the car of Rental is Car;

Listing C.32: DB RAC A3/T3 pm
Adapted

Table C.7: Action Rule DB RAC A3/T3 pm

239

C.5.7 DB RAC A3/T4 st A

This example has been taken from ”DEMO Bachelor+ 3.5 M3 p slide 49”

when car returning for Rental is

stated (T4/st)

with the actual ... BRANCH

assess

justice:

the performer ... Rental;

the addressee ... Rental;

sincerity: <no specific condition>

truth:

the actual return location of

Rental is the return location

of Rental;

Today is ... Rental

if complying with the assessment is

considered justifiable

then

accept car returning ... [T4/ac]

with the addressee ... Rental;

else

reject car returning ... [T4/rj]

with

the addressee ... Rental;

request penalty ... Rental [T5/rq]

with

the addressee ... Rental;

the requested ... paying for

Rental is Now

the requested penalty ... charge

of Rental

Listing C.33: DB RAC A3/T4 st A
Original

rule DB RAC A3 T4 st A

when car returning for Rental is

stated (T4/st)

with the actual ... BRANCH;

assess

justice:

the performer ... Rental;

the addressee ... Rental;

truth:

the actual return location of

Rental is equal

to the return location of

Rental;

the current day

of Today is ... Rental;

if complying with state is considered

justifiable

then

accept car returning ... (T4/ac)

with the addressee ... Rental;

else

reject car returning ... (T4/rj)

with

the addressee ... Rental;

request penalty ... Rental (T5/rq)

with

the addressee ... Rental;

the [requested ... paying] of

Rental is the current day

of Now;

the requested penalty ... charge

of Rental;

Listing C.34: DB RAC A3/T4 st A
Adapted

Table C.9: Action Rule DB RAC A3/T4 st A

240

C.5.8 DB RAC A3/T5 st

This example has been taken from ”DEMO Bachelor+ 3.5 M3 p slide 50”

when penalty paying for Rental is

stated (T5/st)

assess

justice:

the performer of the statement is

the driver of Rental;

the addressee of the statement is

the car issuer of Rental;

sincerity: <no specific condition>

truth:

the stated penalty amount of

Rental is equal to the

requested penalty amount of

Rental;

the stated production time of

penalty paying for Rental is

within the promised production

time of penalty paying for

Rental

if complying with the assessment is

considered justifiable

then

accept penalty paying for Rental

[T5/ac]

with

the addressee of the acceptance

is the driver of Rental

else

reject penalty paying for Rental

[T5/rj]

with

the addressee of the acceptance

is the driver of Rental

Listing C.35: DB RAC A3/T5 st Original

rule DB RAC A3 T5 st

when penalty paying for Rental is

stated (T5/st)

assess

justice:

the performer of the statement is

the driver of Rental;

the addressee of the statement is

the car issuer of Rental;

truth:

the stated penalty amount of

Rental is equal to the

requested penalty amount of

Rental;

the stated production time of

penalty paying for Rental is

less than the promised

production time of penalty

paying for Rental;

if complying with state is considered

justifiable

then

accept penalty paying for Rental

(T5/ac)

with

the addressee of the acceptance

is the driver of Rental;

else

reject penalty paying for Rental

(T5/rj)

with

the addressee of the acceptance

is the driver of Rental;

Listing C.36: DB RAC A3/T5 st Adapted

Table C.10: Action Rule DB RAC A3/T5 st

241

C.5.9 DB RAC A3/T4 st B

This example has been taken from ”DEMO Bachelor+ 3.5 M3 p slide 51”

when car returning for Rental is

stated (T4/st)

while penalty paying for Rental is

accepted (T5/ac)

assess

justice:

the performer of the statement is

the driver of Rental;

the addressee of the statement is

the car issuer of Rental;

sincerity: <no specific condition>

truth: <no specific condition>

if complying with the assessment is

considered justifiable

then

accept car returning for Rental [T4

/ac]

with

the addressee of the acceptance

is the driver of Rental

else

reject car returning for Rental [T4

/rj]

with

the addressee of the rejection is

the driver of Rental

Listing C.37: DB RAC A3/T4 st B
Original

rule DB RAC A3 T4 st B

when car returning for Rental is

stated (T4/st)

while penalty paying for Rental is

accepted (T5/ac)

assess

justice:

the performer of the statement is

the driver of Rental;

the addressee of the statement is

the car issuer of Rental;

if complying with state is considered

justifiable

then

accept car returning for Rental (T4

/ac)

with

the addressee of the acceptance

is the driver of Rental;

else

reject car returning for Rental (T4

/rj)

with

the addressee of the rejection is

the driver of Rental;

Listing C.38: DB RAC A3/T4 st B
Adapted

Table C.11: Action Rule DB RAC A3/T4 st B

242

C.5.10 DB RAC A6/T6 pm

This example has been taken from ”DEMO Bachelor+ 3.5 M3 p slide 60”

when transport completing for

Transport is promised (T6/pm)

assess

justice:

the performer of the promise is

the transporter for Transport;

the addressee of the promise is

the transport manager;

sincerity: <no specific condition>

truth:

it is possible to execute the

task on day of transport of

Transport

if complying with the assessment is

considered justifiable

then

execute transport completing for

Transport [T6/ex]

state transport completing for

Transport [T6/st]

with

the addressee of the statement is

the transport manager

Listing C.39: DB RAC A6/T6 pm
Original

rule DB RAC A6 T6 pm

when transport completing for

Transport is promised (T6/pm)

assess

justice:

the performer of the promise is

the transporter of Transport;

the addressee of the promise is

the transport manager of

Transport;

truth:

the [possibility of execution of

the task on day of transport]

of Transport is equal to

true;

if complying with promise is

considered justifiable

then

execute transport completing for

Transport (T6/ex)

state transport completing for

Transport (T6/st)

with

the addressee of the statement is

the transport manager of

Transport;

Listing C.40: DB RAC A6/T6 pm
Adapted

Table C.12: Action Rule DB RAC A6/T6 pm

243

C.5.11 DB RAC A6/T6 st

This example has been taken from ”DEMO Bachelor+ 3.5 M3 p slide 60”

when transport completing for

Transport is stated (T6/st)

assess

justice:

the performer of the statement is

the transporter for Transport

;

the addressee of the statement is

the transport manager;

sincerity: <no specific condition>

truth:

the car of Transport has been

delivered at the

to-branch of Transport

if complying with the assessment is

considered justifiable

then

accept transport completing for

Transport [T6/ac]

with

the addressee of the acceptance

is the transporter for

Transport

else

reject transport completing for

Transport [T6/rj]

with

the addressee of the rejecti is

the transporter for Transport

Listing C.41: DB RAC A6/T6 st Original

rule DB RAC A6 T6 st

when transport completing for

Transport is stated (T6/st)

assess

justice:

the performer of the statement is

the transporter of Transport;

the addressee of the statement is

the transport manager of

Transport;

truth:

the [deliverance of car of

Transport at the

to branch] of Transport is

equal to true;

if complying with state is considered

justifiable

then

accept transport completing for

Transport (T6/ac)

with

the addressee of the acceptance

is the transporter of

Transport;

else

reject transport completing for

Transport (T6/rj)

with

the addressee of the rejecti is

the transporter of Transport;

Listing C.42: DB RAC A6/T6 st Adapted

Table C.13: Action Rule DB RAC A6/T6 st

244

C.5.12 DB RAC A7/T7 rq

This example has been taken from ”DEMO Bachelor+ 3.5 M3 p slide 56”

when transport management for Day is

requested (T7/rq)

assess

justice:

the performer of the request is

the transport manager

the addressee of the request is

the transport manager

sincerity: <no specific condition>

truth:

the number of cars to be

transported on Day is greater

than zero

if complying with the assessment is

considered justifiable

then

promise transport management for

Day [T7/pm]

with

the addressee of the promise is

the transport manager

else

decline transport management for

Day [T7/dc]

with

the addressee of the decline is

the transport manager;

request transport management for

Next Day (T7/rq)

Listing C.43: DB RAC A7/T7 rq Original

rule DB RAC A7 T7 rq

when transport management for Day is

requested (T7/rq)

assess

justice:

the performer of the request is

the transport manager of

Transport;

the addressee of the request is

the transport manager of

Transport;

truth:

the number of cars to be

transported in Day is greater

than 0

cars;

if complying with request is

considered justifiable

then

promise transport management for

Day (T7/pm)

with

the addressee of the promise is

the transport manager of

Transport;

else

decline transport management for

Day (T7/dc)

with

the addressee of the decline is

the transport manager of

Transport;

request transport management for

Next Day (T7/rq)

Listing C.44: DB RAC A7/T7 rq Adapted

Table C.14: Action Rule DB RAC A7/T7 rq

245

C.5.13 DB RAC A7/T7 pm A

This example has been taken from ”DEMO Bachelor+ 3.5 M3 p slide 57”

when transport management for Day is

promised (T7/pm)

assess

justice:

the performer of the promise is

the transport manager

the addressee of the promise is

the transport manager

sincerity: <no specific condition>

truth: <no specific condition>

if complying with the assessment is

considered justifiable

then

for each Car in {cars to be

transported on Day}

request transport completing for

Transport (T06/rq)

with

the addressee of the request is

a transporter;

the car of Transport is Car

Listing C.45: DB RAC A7/T7 pm A
Original

rule DB RAC A7 T7 pm A

when transport management for Day is

promised (T7/pm)

assess

justice:

the performer of the promise is

the transport manager of

Transport;

the addressee of the promise is

the transport manager of

Transport;

if complying with promise is

considered justifiable

then

for each Car in {the cars to be

transported of Day}

{
request transport completing for

Transport (T06/rq)

with

the addressee of the request is

the transporter of

Transport;

the car of Transport is some

Car;

}
Listing C.46: DB RAC A7/T7 pm A
Adapted

Table C.15: Action Rule DB RAC A7/T7 pm 1

246

C.5.14 DB RAC A7/T7 pm B

This example has been taken from ”DEMO Bachelor+ 3.5 M3 p slide 57”

when transport management for Day is

promised (T7/pm)

while

for each Car in {cars to be

transported on Day}

transport completing for

Transport of Car is accepted

(T06/ac)

assess

justice:

the performer of the promise is

the transport manager

the addressee of the promise is

the transport manager

sincerity: <no specific condition>

truth: <no specific condition>

if complying with the assessment is

considered justifiable

then

execute transport management for

Day [T7/ex]

state transport management for Day

[T7/st]

with

the addressee of the statement is

the transport manager

Listing C.47: DB RAC A7/T7 pm B
Original

rule DB RAC A7 T7 pm B

when transport management for Day is

promised (T7/pm)

while

for each Car in {the cars to be

transported of Day}

{

transport completing for

Transport of Car is accepted

(T06/ac)

}

assess

justice:

the performer of the promise is

the transport manager of

Transport;

the addressee of the promise is

the transport manager of

Transport;

if complying with promise is

considered justifiable

then

execute transport management for

Day (T7/ex)

state transport management for Day

(T7/st)

with

the addressee of the statement is

the transport manager of

Transport;

Listing C.48: DB RAC A7/T7 pm B
Adapted

Table C.16: Action Rule DB RAC A7/T7 pm 2

247

C.5.15 DB RAC A7/T7 st

This example has been taken from ”DEMO Bachelor+ 3.5 M3 p slide 58”

when transport management for Day is

stated (T7/st)

assess

justice:

the performer of the statement is

the transport manager

the addressee of the statement is

the transport manager

sincerity: <no specific condition>

truth: <no specific condition>

if complying with the assessment is

considered justifiable

then

accept transport management for Day

[T7/ac]

with

the addressee of the statement is

the transport manager

else

reject transport management for Day

[T7/rj]

with

the addressee of the reject is

the transport manager

Listing C.49: DB RAC A7/T7 st Original

rule DB RAC A7 T7 st

when transport management for Day is

stated (T7/st)

assess

justice:

the performer of the statement is

the transport manager of

Transport;

the addressee of the statement is

the transport manager of

Transport;

if complying with state is considered

justifiable

then

accept transport management for Day

(T7/ac)

with

the addressee of the statement is

the transport manager of

Transport;

else

reject transport management for Day

(T7/rj)

with

the addressee of the reject is

the transport manager of

Transport;

Listing C.50: DB RAC A7/T7 st Adapted

Table C.17: Action Rule DB RAC A7/T7 st

248

C.5.16 DB RAC A7/T6 rq

This example has been taken from ”DEMO Bachelor+ 3.5 M3 p slide 59”

when transport completing for

Transport is requested (T6/rq)

with

the day ... some day

the car of Transport is some car

the from-branch ... branch

the to-branch ... beanch

assess

justice:

the performer of the request is

the transport manager;

the addressee of the statement is

the transporter for Transport

sincerity: <no specific condition>

truth: transport is doable

if complying with the assessment is

considered justifiable

then

promise transport completing for

Transport [T6/pm]

with

the addressee of the promise is

the transport manager;

the promised ... Transport

else

decline transport completing for

Transport [T6/dc]

with

the addressee of the decline is

the transport manager

Listing C.51: DB RAC A7/T6 rq Original

rule DB RAC A7 T6 rq

when transport completing for

Transport is requested (T6/rq)

with

the day ... some day;

the car of Transport is some car;

the from_branch ... branch;

the to_branch ... branch;

assess

justice:

the performer of the request is

the transport manager of

Transport;

the addressee of the statement is

the transporter of Transport;

truth: the doability

of transport is equal to true;

if complying with request is

considered justifiable

then

promise transport completing for

Transport (T6/pm)

with

the addressee of the promise is

the transport manager of

Transport;

the promised ... Transport;

else

decline transport completing for

Transport (T6/dc)

with

the addressee of the decline is

the transport manager of

Transport;

Listing C.52: DB RAC A7/T6 rq Adapted

Table C.18: Action Rule DB RAC A7/T6 rq

249

C.5.17 DB Volley A1/T1 rq

This example has been taken from ”DEMO Bachelor+ 3.5 M3 p slide 20” This example
does contain the common typos and the formulation error of the Date Time condition.

when membership starting for new

Membership is requested (T1/rq)

with

the member of Membership is a

Person

the starting day of Membership is

a Day

assess

justice:

the performer of the request is

the member of Membership

sincerity: <no specific condition>

truth:

Day is the first day of some

Month;

Month is greater than Current

Month;

the age of Person is equal to or

greater than the minimal age

in the year of Day;

the number of members on Day is

less than the max members in

the year of Day

if complying with the assessment is

considered justifiable

then

promise membership starting for

Membership [T1/pm]

else

decline membership starting for

Membership [T1/dc]

Listing C.53: DB Volley A1/T1 rq
Original

rule DB Volley A1 T1 rq

when membership starting for new

Membership is requested (T1/rq)

with

the member of Membership is some

Person;

the starting day of Membership is

some Day;

assess

justice:

the performer of the request is

the member of Membership;

truth:

the Day of Date is equal to the

first day of some Month;

the Month of Date is greater than

the Current Month of Date;

the age of Person is equal to or

greater than the minimal age

in the year of Day;

the number of members of Day is

less than the max members in

the year of Day;

if complying with request is

considered justifiable

then

promise membership starting for

Membership (T1/pm)

else

decline membership starting for

Membership (T1/dc)

Listing C.54: DB Volley A1/T1 rq
Adapted

Table C.19: Action Rule DB Volley A1/T1 rq

250

C.5.18 DB Volley A1/T1 pm

This example has been taken from ”TEOO 3rd ed fig 4.12 page 62”. This example
complies with the new grammar. It contains the common typos including the assessment
keyword.

when membership start for Membership

is promised (T1/pm)

assess

justice:

the performer of the promise is

the membership starter of

Membership

the addressee of the promise

is the member of

Membership;

sincerity: <no specific condition>

truth: <no specific condition>

if complying with the assessment is

considered justifiable

then

request membership payment for

Membership [T2/rq]

with

the addressee of the request is

the payer of Membership;

the amount to pay of Membership

is equal to the first fee of

Membership

Listing C.55: DB Volley A1/T1 pm
Original

rule DB Volley A1 T1 pm

when membership start for Membership

is promised (T1/pm)

assess

justice:

the performer of the promise is

the membership starter of

Membership;

the addressee of the promise is

the member of Membership;

if complying with request is

considered justifiable

then

request membership payment for

Membership (T2/rq)

with

the addressee of the request is

the payer of Membership;

the amount to pay of Membership

is the first fee of Membership

;

Listing C.56: DB Volley A1/T1 pm
Adapted

Table C.20: Action Rule DB Volley A1/T1 rq

251

C.5.19 DM RAC A1/T1 new rq

This example has been taken from ”master slide 3.4+ module 2 p slide 11 and 12”

when rental concluding for new Rental

is requested (T1/rq)

with

the starting day ... DAY

the ending day ... DAY

the renter ... PERSON

the driver ... PERSON

the payer ... PERSON

the car group ... CAR GROUP

the pick-up location ... BRANCH

the drop-off location ... BRANCH

assess

justice:

the performer of the request is

the renter of Rental;

the addressee of the request is

some rental concluder;

sincerity: <no specific condition>

truth:

the starting day ... Rental;

the ending day ... Rental;

the ending day ... Rental;

the duration of Rental is less

than or equal to the max

rental duration in the year of

the starting day of Rental;

the number of cars in the car

group of Renta on every day in

the rental period of Rental

is greater than zero

Listing C.57: DM RAC A1/T1 new rq
Original

rule [DM RAC A1 T1 new rq]

when rental concluding for new Rental

is requested (T1/rq)

with

the starting day ... day;

the ending day ... day;

the renter ... person;

the driver ... person;

the payer ... person;

the car group ... car group;

the pick up location ... branch;

the drop off location ... branch;

assess

justice:

the performer of the request is

the renter of Rental;

the addressee of the request is

some rental concluder;

truth:

the starting day ... Rental;

the ending day ... Rental;

the ending day ... Rental;

the duration of Rental is less

than or equal to

the max rental duration in the

year of the starting day of

Rental;

the number of cars in the car

group of Rental on every day

in the rental period of Rental

is greater than 0

cars;

Listing C.58: DM RAC A1/T1 new rq
Adapted

Table C.21: Action Rule DM RAC A1/T1 new rq (event and assess)

252

if complying with request is

considered justifiable

then

request rental payment for Rental

[T2/rq]

with the addressee of the request

is the payer of Rental;

the requested production day of

rental payment for Rental

is less than or equal

to the starting day of

Rental;

the requested paid rental

amount of Rental is equal

to the rental charge of

Rental;

else

decline rental concluding for

Rental [T1/dc]

with

the addressee of the decline is

the renter of Rental

Listing C.59: DM RAC A1/T1 new rq
Original

if complying with request is

considered justifiable

then

request rental payment for Rental

(T2/rq)

with

the addressee of the request is

the payer of Rental;

the requested production day of

rental payment for Rental is

the starting day of Rental;

the requested paid rental amount

of Rental is the rental charge

of Rental;

else

decline rental concluding for

Rental (T1/dc)

with

the addressee of the decline is

the renter of Rental;

Listing C.60: DM RAC A1/T1 new rq
Adapted

Table C.22: Action Rule DM RAC A1/T1 new rq (result)

253

C.5.20 DM RAC A1/T1 rq

This example has been taken from ”master slide 3.4+ module 2 p slide 13”

when rental concluding for Rental is

requested (T1/rq)

while rental payment for Rental is

promised (T2/pm)

assess

justice:

the performer ... of Rental;

the addressee ... of Rental;

sincerity: <no specific condition>

truth:

the promised paid ... Rental;

the promised production day of

rental payment for Rental is

less than or equal to the

starting day of Rental

if complying with request is

considered justifiable

then

promise rental concluding for

Rental [T1/pm]

with

the addressee of the promise is

the rental concluder of Rental

else

decline rental concluding for

Rental [T1/dc]

with

the addressee of the decline is

the renter of Rental

Listing C.61: DM RAC A1/T1 rq Original

rule [DM RAC A1 T1 rq]

when rental concluding for Rental is

requested (T1/rq)

while rental payment for Rental is

promised (T2/pm)

assess

justice:

the performer ... of Rental;

the addressee ... of Rental;

truth:

the promised paid ... Rental;

the promised production day of

rental payment of Rental is

less than or equal to the

starting day of Rental;

if complying with request is

considered justifiable

then

promise rental concluding for

Rental (T1/pm)

with

the addressee of the promise is

the rental concluder of Rental

;

else

decline rental concluding for

Rental (T1/dc)

with

the addressee of the decline is

the renter of Rental;

Listing C.62: DM RAC A1/T1 rq
Adapted

Table C.23: Action Rule DM RAC A1/T1 rq

254

C.5.21 DM RAC A1/T2 st (sl14)

This example has been taken from ”master slide 3.4+ module 2 p slide 14”

when rental payment for Rental is

stated (T2/st)

assess

justice:

the performer of the statement is

the renter of Rental;

the addressee of the statement is

the rental concluder of

Rental;

sincerity: <no specific condition>

truth:

the stated paid ... Rental

if complying with statement is

considered justifiable

then

accept rental payment for Rental

[T2/ac]

with

the addressee of the acceptance

is the renter of Rental

else

reject rental payment for Rental

[T2/rj]

with

the addressee of the rejection is

the renter of Rental

Listing C.63: DM RAC A1/T2 st (sl14)
Original

rule [DM RAC A1 T2 st14]

when rental payment for Rental is

stated (T2/st)

assess

justice:

the performer of the statement is

the renter of Rental;

the addressee of the statement is

the rental concluder of

Rental;

truth:

the stated paid rental amount of

Rental is equal to the

promised paid rental amount of

Rental;

the stated ... Rental;

if complying with state is considered

justifiable

then

accept rental payment for Rental

(T2/ac)

with

the addressee of the acceptance

is the renter of Rental;

else

reject rental payment for Rental

(T2/rj)

with

the addressee of the rejection is

the renter of Rental;

Listing C.64: DM RAC A1/T2 st (sl14)
Adapted

Table C.24: Action Rule DM RAC A1/T2 st

255

C.5.22 DM RAC A1/T1 pm

This example has been taken from ”master slide 3.4+ module 2 p slide 13”

when rental concluding for Rental is

promised (T1/pm)

while rental payment for Rental is

accepted (T2/ac)

assess

justice:

the performer of the promise is

the rental concluder of Rental

;

the addressee of the promise is

the renter of Rental;

sincerity: <no specific condition>

truth: <no specific condition>

if complying with promise is

considered justifiable

then

execute rental concluding for

Rental [T1/ex]

state rental concluding for Rental

[T1/st]

with

the addressee of the statement is

the renter of Rental

Listing C.65: DM RAC A1/T1 pm
Original

rule [DM RAC A1 T1 pm]

when rental concluding for Rental is

promised (T1/pm)

while rental payment for Rental is

accepted (T2/ac)

assess

justice:

the performer of the promise is

the rental concluder of Rental

;

the addressee of the promise is

the renter of Rental;

if complying with promise is

considered justifiable

then

execute rental concluding for

Rental (T1/ex)

state rental concluding for Rental

(T1/st)

with

the addressee of the statement is

the renter of Rental;

Listing C.66: DM RAC A1/T1 pm
Adapted

Table C.25: Action Rule DM RAC A1/T1 pm

256

C.5.23 DM RAC A1/T1 new rq

This example has been taken from ”master slide 3.4+ module 3 p slide 39, 41”

when rental concluding for new Rental

is requested (T1/rq)

with

the starting day ... day

the ending day ... day

the renter of ... person

the driver of ... person

the payer of ... person

the car group of Rental is some

car group

the pick-up location of Rental is

some branch

the drop-off location of Rental

is some branch

assess

justice:

the performer of the request is

the renter of Rental;

the addressee of the request is

a rental concluder;

sincerity: <no specific condition>

truth:

the starting ... Rental;

the ending ... Rental;

the ending ... Rental;

the duration of Rental is less

than or equal to

the max rental duration in the

year of the starting day of

Rental;

the number of cars ... than zero

Listing C.67: DM RAC A1/T1 new rq
Original

Listing C.68: DM RAC A1/T1 new rq
Adapted

Table C.26: Action Rule DM RAC A1/T1 new rq (event and assess)

257

if complying with the assessment

is considered justifiable

then

request rental payment for Rental

[T2/rq]

with

the addressee of the request is

the payer of Rental;

the requested production day of

rental payment for Rental is

less than or equal

to the starting day of Rental;

the requested paid rental amount

of Rental is equal

to the rental charge of Rental

;

else

decline rental concluding for

Rental [T1/dc]

with

the addressee of the decline is

the renter of Rental

Listing C.69: DM RAC A1/T1 new rq
Original

Listing C.70: DM RAC A1/T1 new rq
Adapted

Table C.27: Action Rule DM RAC A1/T1 new rq (result)

258

C.5.24 DM RAC A1/T1 rq

This example has been taken from ”master slide 3.4+ module 3 p slide 44”

when rental concluding for Rental is

requested (T1/rq)

while rental payment for Rental is

promised (T2/pm)

assess

justice:

the performer of the request is

the renter of Rental;

the addressee of the request is

the rental concluder of Rental

;

sincerity: <no specific condition>

truth:

the promised ... Rental;

the promised production ...

Rental

if complying with the assessment is

considered justifiable

then

promise rental concluding for

Rental [T1/pm]

with

the addressee of the promise is

the rental concluder of Rental

else

decline rental concluding for

Rental [T1/dc]

with

the addressee of the decline is

the renter of Rental

Listing C.71: DM RAC A1/T1 rq Original

rule [DM RAC A1 T1 rq]

when rental concluding for Rental is

requested (T1/rq)

while rental payment for Rental is

promised (T2/pm)

assess

justice:

the performer of the request is

the renter of Rental;

the addressee of the request is

the rental concluder of Rental

;

truth:

the promised ... Rental;

the promised production ...

Rental;

if complying with request is

considered justifiable

then

promise rental concluding for

Rental (T1/pm)

with

the addressee of the promise is

the rental concluder of Rental

;

else

decline rental concluding for

Rental (T1/dc)

with

the addressee of the decline is

the renter of Rental;

Listing C.72: DM RAC A1/T1 rq
Adapted

Table C.28: Action Rule DM RAC A1/T1 rq

259

C.5.25 DM RAC A1/T2 st (sl46)

This example has been taken from ”master slide 3.4+ module 3 p slide 46”

when rental payment for Rental is

stated (T2/st)

assess

justice:

the performer of the statement is

the renter of Rental;

the addressee of the statement is

the rental concluder of

Rental;

sincerity: <no specific condition>

truth:

the stated paid rental ... Rental;

the stated production ... Rental

if complying with the assessment is

considered justifiable

then

accept rental payment for Rental

[T2/ac]

with

the addressee of the acceptance

is the renter of Rental

else

reject rental payment for Rental

[T2/rj]

with

the addressee of the rejection is

the renter of Rental

Listing C.73: DM RAC A1/T2 st (sl46)
Original

rule [DM RAC A1 T2 st46]

when rental payment for Rental is

stated (T2/st)

assess

justice:

the performer of the statement is

the renter of Rental;

the addressee of the statement is

the rental concluder of

Rental;

truth:

the stated paid ... Rental;

the stated production ... Rental;

if complying with state is considered

justifiable

then

accept rental payment for Rental

(T2/ac)

with

the addressee of the acceptance

is the renter of Rental;

else

reject rental payment for Rental

(T2/rj)

with

the addressee of the rejection is

the renter of Rental;

Listing C.74: DM RAC A1/T2 st (sl46)
Adapted

Table C.29: Action Rule DM RAC A1/T2 st

260

C.5.26 DM RAC A1/T1 pm

This example has been taken from ”master slide 3.4+ module 3 p slide 48”

when rental concluding for Rental is

promised (T1/pm)

while rental payment for Rental is

accepted (T2/ac)

assess

justice:

the performer of the promise is

the rental concluder of Rental

;

the addressee of the promise is

the renter of Rental;

sincerity: <no specific condition>

truth: <no specific condition>

if complying with the assessment is

considered justifiable

then

execute rental concluding for

Rental [T1/ex]

state rental concluding for Rental

[T1/st]

with

the addressee of the statement is

the renter of Rental

Listing C.75: DM RAC A1/T1 pm
Original

rule [DM RAC A1 T1 pm]

when rental concluding for Rental is

promised (T1/pm)

while rental payment for Rental is

accepted (T2/ac)

assess

justice:

the performer of the promise is

the rental concluder of Rental

;

the addressee of the promise is

the renter of Rental;

if complying with promise is

considered justifiable

then

execute rental concluding for

Rental (T1/ex)

state rental concluding for Rental

(T1/st)

with

the addressee of the statement is

the renter of Rental;

Listing C.76: DM RAC A1/T1 pm
Adapted

Table C.30: Action Rule DM RAC A1/T1 pm

261

C.5.27 DM Pizza A1/T1 new rq

This example has been taken from ”master slide 3.4+ module 3 p slide 53”

when order completion for new Order

is requested (T01/rq)

with

the customer of Order ... person

the contents of Order is a set of

order item

with

the pizza kind ... pizza kind

the amount of Order ... number

the delivery time ... time

assess

justice:

the performer ... Order

the addressee ... completer

sincerity: <no specific condition>

truth:

for each Order Item in the

contents of Order:

the pizza kind of Order Item is

available

the amount of Order Item is

producible

the requested production ...

than Now plus 10

minutes

if complying with the assessment is

considered justifiable

then promise ... Order [T01/pm]

with the addressee ... of Order

else decline ... Order [T01/dc]

with the addressee ... of Order

Listing C.77: DM Pizza A1/T1 new rq
Original

rule [DM Pizza A1 T1 new rq]

when order completion for new Order

is requested (T01/rq)

with

the customer of Order ... person;

the contents of Order is set of

order item {
with

the pizza kind ... pizza kind;

the amount of Order ... number;

the delivery time ... time;

};
assess

justice:

the performer ... Order;

the addressee ... completer;

truth:

for each Order Item in {the
contents of Order} {

the availability of pizza kind

of Order Item is equal to

true;

the [producebility of amount]

of Order Item is equal to

true;

the requested production ...

than the [Now plus10

minutes] of Time;

}
if complying with request is

considered justifiable

then promise ... Order (T01/pm)

with the addressee ... of Order;

else decline ... Order (T01/dc)

with the addressee ... of Order;

Listing C.78: DM Pizza A1/T1 new rq
Adapted

Table C.31: Action Rule DM Pizza A1/T1 new rq

262

C.5.28 DM Pizza A1/T1 pm A

This example has been taken from ”master slide 3.4+ module 3 p slide 55”

when order completion for Order is

promised (T01/pm)

assess

justice:

the performer of the promise is

the order completer of Order

the addressee of the promise is

the order completer of Order

sincerity: <no specific condition>

truth: <no specific condition>

if complying with the assessment is

considered justifiable

then

request order payment for Order

[T02/rq]

with

the addressee of the request is

the customer of Order

the amount to pay of Order is

total price of Order

Listing C.79: DM Pizza A1/T1 pm A
Original

rule [DM Pizza A1 T1 pm A]

when order completion for Order is

promised (T01/pm)

assess

justice:

the performer of the promise is

the order completer of Order;

the addressee of the promise is

the order completer of Order;

if complying with promise is

considered justifiable

then

request order payment for Order

(T02/rq)

with

the addressee of the request is

the customer of Order;

the amount to pay of Order is

total price of Order;

Listing C.80: DM Pizza A1/T1 pm A
Adapted

Table C.32: Action Rule DM Pizza A1/T1 pm A

263

C.5.29 DM Pizza A1/T1 pm B

This example has been taken from ”master slide 3.4+ module 3 p slide 57”

when order completion for Order

is promised (T01/pm)

while order payment for Order is

promised (T02/pm)

assess

justice:

the performer of the promise is

the order completer of Order

the addressee of the promise is

the order completer of Order

sincerity: <no specific condition>

truth: <no specific condition>

if complying with the assessment is

considered justifiable

then

request order baking for Order [T03

/rq]

with

the addressee of the request is

some order baker

Listing C.81: DM Pizza A1/T1 pm B
Original

rule [DM Pizza A1 T1 pm B]

when order completion for Order is

promised (T01/pm)

while order payment for Order is

promised (T02/pm)

assess

justice:

the performer of the promise is

the order completer of Order;

the addressee of the promise is

the order completer of Order;

if complying with promise is

considered justifiable

then

request order baking for Order (T03

/rq)

with

the addressee of the request is

some order baker;

Listing C.82: DM Pizza A1/T1 pm B
Adapted

Table C.33: Action Rule DM Pizza A1/T1 pm B

264

C.5.30 DM Pizza A1/T2 st

This example has been taken from ”master slide 3.4+ module 3 p slide 58”

when order payment for Order is

stated (T02/st)

assess

justice:

the performer of the statement is

the customer of Order

the addressee of the statement is

the order completer of Order

sincerity: <no specific condition>

truth:

the stated paid amount of Order

is equal to the promised

amount to pay of Order

the stated production time of

order payment for Order is

equal to the promised

production time of order

payment for Order

if complying with the assessment is

considered justifiable

then

accept order payment for Order [T02

/ac]

with

the addressee of the acceptance

is the customer of Order

else

reject order payment for Order [T02

/rj]

with

the addressee of the rejection is

the customer of Order

Listing C.83: DM Pizza A1/T2 st Original

rule [DM Pizza A1 T2 st]

when order payment for Order is

stated (T02/st)

assess

justice:

the performer of the statement is

the customer of Order;

the addressee of the statement is

the order completer of Order;

truth:

the stated paid amount of Order

is equal to the promised

amount to pay of Order;

the [stated production time of

order payment] of Order is

equal to the [promised

production time of order

payment] of Order;

if complying with state is considered

justifiable

then

accept order payment for Order (T02

/ac)

with

the addressee of the acceptance

is the customer of Order;

else

reject order payment for Order (T02

/rj)

with

the addressee of the rejection is

the customer of Order;

Listing C.84: DM Pizza A1/T2 st
Adapted

Table C.34: Action Rule DM Pizza A1/T2 st

265

C.5.31 DM Pizza A1/T3 st

This example has been taken from ”master slide 3.4+ module 3 p slide 59”

when order baking for Order is stated

(T03/st)

assess

justice:

the performer of the statement is

the order baker of Order

the addressee of the statement is

the order completer of Order

sincerity: <no specific condition>

truth:

the stated contents of Order is

equal to the promised contents

of Order

the stated production time of

order baking for Order is

equal to the promised

production time of order

baking for Order

if complying with the assessment is

considered justifiable

then

accept order baking for Order [T03/

ac]

with

the addressee of the acceptance

is the order baker of Order

else

reject order baking for Order [T03/

rj]

with

the addressee of the rejection is

the order baker of Order

Listing C.85: DM Pizza A1/T3 st Original

rule [DM Pizza A1 T3 st]

when order baking for Order is stated

(T03/st)

assess

justice:

the performer of the statement is

the order baker of Order;

the addressee of the statement is

the order completer of Order;

truth:

the stated contents of Order is

equal to the promised contents

of Order;

the [stated production time of

order baking] of Order is

equal to the [promised

production time of order

baking] of Order;

if complying with state is considered

justifiable

then

accept order baking for Order (T03/

ac)

with

the addressee of the acceptance

is the order baker of Order;

else

reject order baking for Order (T03/

rj)

with

the addressee of the rejection is

the order baker of Order;

Listing C.86: DM Pizza A1/T3 st
Adapted

Table C.35: Action Rule DM Pizza A1/T3 st

266

C.5.32 DM Pizza A1/T1 pm

This example has been taken from ”master slide 3.4+ module 3 p slide 61”

when order completion for Order is

promised (T01/pm)

while

order payment for Order is

accepted (T02/ac)

order baking for Order is

accepted (T03/ac)

assess

justice:

the performer of the promise is

the order completer of Order

the addressee of the promise is

the order completer of Order

sincerity: <no specific condition>

truth: <no specific condition>

if complying with the assessment is

considered justifiable

then

execute order completion for Order

[T01/ex]

state order completion for Order

[T01/st]

with

the addressee of the statement is

the customer of Order

Listing C.87: DM Pizza A1/T1 pm
Original

rule [DM Pizza A1 T1 pm]

when order completion for Order is

promised (T01/pm)

while

order payment for Order is

accepted (T02/ac)

order baking for Order is

accepted (T03/ac)

assess

justice:

the performer of the promise is

the order completer of Order;

the addressee of the promise is

the order completer of Order;

if complying with promise is

considered justifiable

then

execute order completion for Order

(T01/ex)

state order completion for Order

(T01/st)

with

the addressee of the statement is

the customer of Order;

Listing C.88: DM Pizza A1/T1 pm
Adapted

Table C.36: Action Rule DM Pizza A1/T1 pm

267

Appendix D

Exchange Metamodel

D.1 Model base

<xs:schema id="DEMO3"

targetNamespace="http://www.ee-institute.org/DEMOProp"

elementFormDefault="qualified"

xmlns="http://www.ee-institute.org/DEMOProp"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

>

Listing D.1: Schema specification

<xs:element name="DEMOmodel">

<xs:annotation>

<xs:documentation xml:lang="en">

This XSD schema is the DEMO 3.8 schema to exchange DEMO models.

Each element is documented and restrictedto the specifications that

find origin in DEMOSL3.7 and DEMOBAKER.

The distribution file has a filename with a version number yyyymmdd.

The date of release.

All relevant documentation per element is added in Annotations, not in

comments.

The DEMOmodel must comply to this XSD, but still can contain other

errors that cannot be forced with XSD.

The validation of the complete model is also available for public use.

</xs:documentation>

</xs:annotation>

Listing D.2: Model specification

<xs:attribute name="Name" type="DEMOModelName" use="optional"/>

Listing D.3: Model attributes specification

269

D.2 Core collections

<xs:element name="TransactionKinds" minOccurs="0" maxOccurs="1">

<xs:annotation>

<xs:documentation>

A listing of all available Transaction Kinds in this model.

Transaction Kinds are abbreviated with TK.

Not all TKs in this list have to be used in diagrams or

connections, but will give a warning upon validation.

</xs:documentation>

</xs:annotation>

<xs:complexType>

<xs:sequence>

<xs:element name="TransactionKind" type="TransactionKind"

minOccurs="1" maxOccurs="unbounded">

<xs:annotation>

<xs:documentation>

A Transaction Kind element can be added. When the

TransactionKinds is present,

a minimum of one TransactionKind must be added.

</xs:documentation>

</xs:annotation>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

Listing D.4: Model transactionkind collection

<xs:element name="ElementaryActorRoles" minOccurs="0" maxOccurs="1">

<xs:annotation>

<xs:documentation>

A listing of all available Elementary Actor Roles in this model.

Elementary Actor Roles are abbreviated with EAR.

Not all EARs in this list have to be used in diagrams or

connections, but will give a warning upon validation.

</xs:documentation>

</xs:annotation>

<xs:complexType>

<xs:sequence>

<xs:element name="ElementaryActorRole" type="ElementaryActorRole"

minOccurs="1" maxOccurs="unbounded">

<xs:annotation>

<xs:documentation>

A Elementary Actor Role element can be added. When the

ElementaryActorRoles is present,

a minimum of one ElementaryActorRole must be added.

270

</xs:documentation>

</xs:annotation>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

Listing D.5: Model elementary actor role collection

<xs:element name="AggregateTransactionKinds" minOccurs="0" maxOccurs="1

">

<xs:annotation>

<xs:documentation>A listing of all available Aggregate Transaction

Kinds</xs:documentation>

</xs:annotation>

<xs:complexType>

<xs:sequence>

<xs:element name="AggregateTransactionKind" type="

AggregateTransactionKind" minOccurs="1" maxOccurs="unbounded">

<xs:annotation>

<xs:documentation>

A Aggregate Transaction Kind element can be added. When the

AggregateTransactionKinds is present,

a minimum of one AggregateTransactionKind must be added.

</xs:documentation>

</xs:annotation>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

Listing D.6: Model aggregate transactionkind collection

<xs:element name="CompositeActorRoles" minOccurs="0" maxOccurs="1">

<xs:annotation>

<xs:documentation>A listing of all available Composite Actor Roles</

xs:documentation>

</xs:annotation>

<xs:complexType>

<xs:sequence>

<xs:element name="CompositeActorRole" type="CompositeActorRole"

minOccurs="1" maxOccurs="unbounded">

<xs:annotation>

<xs:documentation>

A Composite Actor Role element can be added. When the

CompositeActorRoles is present,

a minimum of one CompositeActorRole must be added.

</xs:documentation>

271

</xs:annotation>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

Listing D.7: Model composite actor role collection

<xs:element name="Actors" minOccurs="0" maxOccurs="1">

<xs:annotation>

<xs:documentation>A listing of all available Actors</

xs:documentation>

</xs:annotation>

<xs:complexType>

<xs:sequence>

<xs:element name="Actor" type="Actor" minOccurs="1" maxOccurs="

unbounded">

<xs:annotation>

<xs:documentation>

A Actor element can be added. When the Actor is present,

a minimum of one Actor must be added.

</xs:documentation>

</xs:annotation>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

Listing D.8: Model actor collection

<xs:element name="IndependentFactKinds" minOccurs="0" maxOccurs="1">

<xs:annotation>

<xs:documentation>A listing of all available Independent Fact Kinds<

/xs:documentation>

</xs:annotation>

<xs:complexType>

<xs:sequence>

<xs:element name="IndependentFactKind" type="IndependentFactKind"

minOccurs="1" maxOccurs="unbounded">

<xs:annotation>

<xs:documentation>

A Independent Fact Kind element can be added. When the

IndependentFactKinds is present,

a minimum of one IndependentFactKind must be added.

</xs:documentation>

</xs:annotation>

</xs:element>

</xs:sequence>

272

</xs:complexType>

</xs:element>

Listing D.9: Model independent fact kind collection

<xs:element name="TransactionProcessStepKinds" minOccurs="0" maxOccurs=

"1">

<xs:annotation>

<xs:documentation>A listing of all available Transaction Process

Step Kinds</xs:documentation>

</xs:annotation>

<xs:complexType>

<xs:sequence>

<xs:element name="TransactionProcessStepKind" type="

TransactionProcessStepKind" minOccurs="1" maxOccurs="unbounded"

>

<xs:annotation>

<xs:documentation>

A Transaction Process Step Kind element can be added. When

the TransactionProcessStepKinds is present,

a minimum of one TransactionProcessStepKind must be added.

</xs:documentation>

</xs:annotation>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

Listing D.10: Model transaction proces step kind collection

<xs:element name="AttributeTypes" minOccurs="0" maxOccurs="1">

<xs:annotation>

<xs:documentation>A listing of all available AttributeTypes</

xs:documentation>

</xs:annotation>

<xs:complexType>

<xs:sequence>

<xs:element name="AttributeType" type="AttributeType" minOccurs="1

" maxOccurs="unbounded">

<xs:annotation>

<xs:documentation>

A Attribute Type element can be added. When the

AttributeTypes is present,

a minimum of one AttributeType must be added.

</xs:documentation>

</xs:annotation>

</xs:element>

</xs:sequence>

273

</xs:complexType>

</xs:element>

Listing D.11: Model attribute collection

<xs:element name="EntityTypes" minOccurs="0" maxOccurs="1">

<xs:annotation>

<xs:documentation>A listing of all available EntityTypes</

xs:documentation>

</xs:annotation>

<xs:complexType>

<xs:sequence>

<xs:element name="EntityType" type="EntityType" minOccurs="1"

maxOccurs="unbounded">

<xs:annotation>

<xs:documentation>

A Entity Type element can be added. When the EntityTypes is

present,

a minimum of one EntityType must be added.

</xs:documentation>

</xs:annotation>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

Listing D.12: Model entity type collection

<xs:element name="ActionRuleTypes" minOccurs="0" maxOccurs="1">

<xs:annotation>

<xs:documentation>A listing of all available Action Rule Types</

xs:documentation>

</xs:annotation>

<xs:complexType>

<xs:sequence>

<xs:element name="ActionRuleType" type="ActionRuleType" minOccurs=

"0" maxOccurs="unbounded">

<xs:annotation>

<xs:documentation>

A Action Rule Type element can be added. When the

ActionRuleTypes is present,

a minimum of one ActionRuleType must be added.

</xs:documentation>

</xs:annotation>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

274

Listing D.13: Model action rule collection

D.3 Connection collections

<xs:element name="Connections" minOccurs="0" maxOccurs="1">

<xs:annotation>

<xs:documentation>A listing of all available connections</

xs:documentation>

</xs:annotation>

<xs:complexType>

<xs:sequence>

<xs:element name="Connection" type="Connection" minOccurs="1"

maxOccurs="unbounded">

<xs:annotation>

<xs:documentation>

A Connection element can be added. When the Connections is

present,

a minimum of one Connection must be added.

</xs:documentation>

</xs:annotation>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

Listing D.14: Model connection collection

D.4 Core diagram collections

<xs:element name="OrganisationConstructionDiagrams" minOccurs="0"

maxOccurs="1">

<xs:annotation>

<xs:documentation>A listing of all available Organisation

Construction Diagrams</xs:documentation>

</xs:annotation>

<xs:complexType>

<xs:sequence>

<xs:element name="OrganisationConstructionDiagram" type="

OrganisationConstructionDiagram" minOccurs="1" maxOccurs="

unbounded">

<xs:annotation>

<xs:documentation>

275

An Organisation Construction Diagram element can be added.

When the OrganisationConstructionDiagrams is present,

a minimum of one OrganisationConstructionDiagram must be

added.

</xs:documentation>

</xs:annotation>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

Listing D.15: Model construction diagram collection

<xs:element name="ProcessStructureDiagrams" minOccurs="0" maxOccurs="1"

>

<xs:annotation>

<xs:documentation>A listing of all available Process Structure

Diagrams</xs:documentation>

</xs:annotation>

<xs:complexType>

<xs:sequence>

<xs:element name="ProcessStructureDiagram" type="

ProcessStructureDiagram" minOccurs="1" maxOccurs="unbounded">

<xs:annotation>

<xs:documentation>

An Process Structure Diagram element can be added. When the

ProcessStructureDiagrams is present,

a minimum of one ProcessStructureDiagram must be added.

</xs:documentation>

</xs:annotation>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

Listing D.16: Model process diagram collection

<xs:element name="ObjectFactDiagrams" minOccurs="0" maxOccurs="1">

<xs:annotation>

<xs:documentation>A listing of all available Object Fact Diagrams</

xs:documentation>

</xs:annotation>

<xs:complexType>

<xs:sequence>

<xs:element name="ObjectFactDiagram" type="ObjectFactDiagram"

minOccurs="1" maxOccurs="unbounded">

<xs:annotation>

<xs:documentation>

276

An Object Fact Diagram element can be added. When the

ObjectFactDiagrams is present,

a minimum of one ObjectFactDiagram must be added.

</xs:documentation>

</xs:annotation>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

Listing D.17: Model fact diagram collection

<xs:element name="ActorFunctionDiagrams" minOccurs="0" maxOccurs="1">

<xs:annotation>

<xs:documentation>A listing of all available Actor Function Diagrams

</xs:documentation>

</xs:annotation>

<xs:complexType>

<xs:sequence>

<xs:element name="ActorFunctionDiagram" type="ActorFunctionDiagram

" minOccurs="1" maxOccurs="unbounded">

<xs:annotation>

<xs:documentation>

An Actor Function Diagram element can be added. When the

ActorFunctionDiagrams is present,

a minimum of one ActorFunctionDiagram must be added.

</xs:documentation>

</xs:annotation>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

Listing D.18: Model actor function diagram collection

<xs:element name="TransactionProcessDiagrams" minOccurs="0" maxOccurs="

1">

<xs:annotation>

<xs:documentation>A listing of all available Transaction Process

Diagrams</xs:documentation>

</xs:annotation>

<xs:complexType>

<xs:sequence>

<xs:element name="TransactionProcessDiagram" type="

TransactionProcessDiagram" minOccurs="1" maxOccurs="unbounded">

<xs:annotation>

<xs:documentation>

277

An Transaction Process Diagram element can be added. When the

TransactionProcessDiagrams is present,

a minimum of one TransactionProcessDiagram must be added.

</xs:documentation>

</xs:annotation>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

Listing D.19: Model transaction diagram collection

<xs:element name="ActionRuleDiagrams" minOccurs="0" maxOccurs="1">

<xs:annotation>

<xs:documentation>A listing of all available Action Rule Diagrams</

xs:documentation>

</xs:annotation>

<xs:complexType>

<xs:sequence>

<xs:element name="ActionRuleDiagram" type="ActionRuleDiagram"

minOccurs="1" maxOccurs="unbounded">

<xs:annotation>

<xs:documentation>

An Action Rule Diagram element can be added. When the

ActionRuleDiagrams is present,

a minimum of one ActionRuleDiagram must be added.

</xs:documentation>

</xs:annotation>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

Listing D.20: Model action rule diagram collection

D.5 Core validation collection

<xs:element name="ValidationResults" minOccurs="0" maxOccurs="1">

<xs:annotation>

<xs:documentation>

A listing of all Errors in this model.

This is beyond the DEMO meta model but is used for communication

about the errors found in the model

</xs:documentation>

</xs:annotation>

<xs:complexType>

278

<xs:sequence>

<xs:element name="ValidationResult" type="ValidationResult"

minOccurs="1" maxOccurs="unbounded">

<xs:annotation>

<xs:documentation>

An Validation Result element can be added. When the

ValidationResults is present,

a minimum of one ValidationResult must be added.

</xs:documentation>

</xs:annotation>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

Listing D.21: Model validation result collection

D.6 Basic data types

<xs:simpleType name="PositiveInteger" id="PositiveInteger">

<xs:annotation>

<xs:documentation>

PositiveInteger allows for an integer from 1 to infinity.

</xs:documentation>

</xs:annotation>

<xs:restriction base="xs:int">

<xs:minInclusive value="1"/>

</xs:restriction>

</xs:simpleType>

Listing D.22: Positive integer

<xs:simpleType name="PositiveDouble" id="PositiveDouble">

<xs:annotation>

<xs:documentation>

PositiveDouble allows for an double from 0 to infinity.

0 is not included, it is not positive.

</xs:documentation>

</xs:annotation>

<xs:restriction base="xs:double">

<xs:minExclusive value="0"/>

</xs:restriction>

</xs:simpleType>

Listing D.23: Positive integer

279

<xs:complexType name="Location">

<xs:annotation>

<xs:documentation>

Location is the x,y coordinate and location Type of the location of

an diagram element on a diagram.

The location complexType is used for lines and diagram Elements.

To compute the center of a diagram element,

use CenterX = Left + Width/2; CenterY = Top + Height/2;

</xs:documentation>

</xs:annotation>

<xs:sequence>

<xs:element name="Top" type="xs:double">

<xs:annotation>

<xs:documentation>

Top is the y coordinate (vertical) of the location of an diagram

element

on a diagram. Positive y is upward.

</xs:documentation>

</xs:annotation>

</xs:element>

<xs:element name="Left" type="xs:double">

<xs:annotation>

<xs:documentation>

Left is the x coordinate (horizontal) of the location of an diagram

element

on a diagram. Postive x is to the right.

</xs:documentation>

</xs:annotation>

</xs:element>

<xs:element name="Zorder" type="xs:integer">

<xs:annotation>

<xs:documentation>

Zorder is the order of drawing the elements on a diagram.

The lowest element has the smallest Zorder. In case of equal numbers

the result is undefined.

</xs:documentation>

</xs:annotation>

</xs:element>

<xs:element name="Type" type="xs:string" minOccurs="0" maxOccurs="1">

<xs:annotation>

<xs:documentation>

The Type is usable for graphical applications to store their

specific properties on a location.

This field is not restricted nor controlled by this standard.

</xs:documentation>

</xs:annotation>

280

</xs:element>

</xs:sequence>

</xs:complexType>

Listing D.24: Location type

<xs:complexType name="Size">

<xs:annotation>

<xs:documentation>

Size is the complexType that stores the dimensions of an diagram

element.

</xs:documentation>

</xs:annotation>

<xs:sequence>

<xs:element name="Width" type="PositiveDouble">

<xs:annotation>

<xs:documentation>

Width is the x coordinate difference of an diagram element.

</xs:documentation>

</xs:annotation>

</xs:element>

<xs:element name="Height" type="PositiveDouble">

<xs:annotation>

<xs:documentation>

Height is the y coordinate difference of an diagram element.

</xs:documentation>

</xs:annotation>

</xs:element>

</xs:sequence>

</xs:complexType>

Listing D.25: Size type

<xs:complexType name="Line">

<xs:annotation>

<xs:documentation>

Line is the visualisation concept for a connection on a diagram.

Using lines you can show the preferred path of the line on the diagram.

The coordinates follow the same definitions as given in Location.

</xs:documentation>

</xs:annotation>

<xs:sequence>

<xs:element name="Start" type="Location">

<xs:annotation>

<xs:documentation>

Start is the starting location of a line between two diagram

elements.

This does not represent the connection of the elements.

281

</xs:documentation>

</xs:annotation>

</xs:element>

<xs:element name="Midpoints" type="Location" minOccurs="0" maxOccurs="

unbounded">

<xs:annotation>

<xs:documentation>

Midpoints is the set of locations of a line between two diagram

elements, more that start and end.

This does not represent the connection of the elements.

</xs:documentation>

</xs:annotation>

</xs:element>

<xs:element name="End" type="Location">

<xs:annotation>

<xs:documentation>

End is the end location of a line between two diagram elements.

This does not represent the connection of the elements.

</xs:documentation>

</xs:annotation>

</xs:element>

<xs:element name="Type" type="xs:string">

<xs:annotation>

<xs:documentation>

The Type is usable for graphical applications to store their

specific properties on a line or line segment.

This field is not restricted nor controlled by this standard.

</xs:documentation>

</xs:annotation>

</xs:element>

</xs:sequence>

</xs:complexType>

Listing D.26: Line type

D.7 Elements

<xs:complexType name="TransactionKind">

<xs:sequence>

<xs:element name="Identification" type="TransactionKindId"></xs:element>

<xs:element name="Name" type="TransactionKindName"></xs:element>

<xs:element name="TransactionSort" type="TransactionSort" default="

unknown"></xs:element>

</xs:sequence>

<xs:attribute name="Id" type="TransactionKindGuid" use="required"/>

</xs:complexType>

282

Listing D.27: Transaction kind

This exchange rule set described in XSD can sufficiently restrict field content for each
Transaction Kind (TK).

<xs:complexType name="AggregateTransactionKind">

<xs:sequence>

<xs:element name="Identification" type="AggregateTransactionKindId"></

xs:element>

<xs:element name="Name" type="TransactionKindName"></xs:element>

</xs:sequence>

<xs:attribute name="Id" type="AggregateTransactionKindGuid" use="required"/

>

</xs:complexType>

Listing D.28: Aggregate transaction kind

<xs:complexType name="ElementaryActorRole">

<xs:sequence>

<xs:element name="Identification" type="ActorRoleId"></xs:element>

<xs:element name="Name" type="ActorRoleName"></xs:element>

</xs:sequence>

<xs:attribute name="Id" type="ElementaryActorRoleGuid" use="required"/>

</xs:complexType>

Listing D.29: Elementary actor role

<xs:complexType name="CompositeActorRole">

<xs:sequence>

<xs:element name="Identification" type="CompositeActorRoleId"></

xs:element>

<xs:element name="Name" type="ActorRoleName"></xs:element>

</xs:sequence>

<xs:attribute name="Id" type="CompositeActorRoleGuid" use="required"/>

</xs:complexType>

Listing D.30: Composite actor role

<xs:complexType name="TransactionProcessStepKind">

<xs:annotation>

<xs:documentation>

The Independent Fact Kind corresponds to the Transaction Kind in a one-

on-one relation.

</xs:documentation>

</xs:annotation>

<xs:sequence>

<xs:element name="TransactionKind" type="TransactionKindGuid"/>

<xs:element name="StepKind" type="GeneralStepKind"/>

283

</xs:sequence>

<xs:attribute name="Id" type="TransactionProcessStepKindGuid" use="required

"/>

</xs:complexType>

Listing D.31: Transaction process step kind

<xs:complexType name="IndependentFactKind">

<xs:annotation>

<xs:documentation>

The Independent Fact Kind corresponds to the Transaction Kind in a one-

on-one relation.

</xs:documentation>

</xs:annotation>

<xs:sequence>

<xs:element name="Identification" type="ProductKindId"/>

<xs:element name="Formulation" type="xs:string"/>

</xs:sequence>

<xs:attribute name="Id" type="IndependentFactKindGuid" use="required"/>

</xs:complexType>

Listing D.32: Independent fact kind

<xs:complexType name="EntityType">

<xs:sequence>

<!--<xs:element name="Identification" type="entity_type_id"></xs:element>

-->

<xs:element name="Name" type="DefiniteEntityVariable"></xs:element>

</xs:sequence>

<xs:attribute name="Id" type="EntityTypeGuid" use="required"/>

</xs:complexType>

Listing D.33: Entity type

Listing D.34: Property type

<xs:complexType name="AttributeType">

<xs:sequence>

<!--<xs:element name="Identification" type="entity_type_id"></xs:element>

-->

<xs:element name="Name" type="FactKindName"></xs:element>

<xs:element name="ValueTypes" type="ObjectClassName"></xs:element>

<xs:element name="EntityType" type="EntityTypeGuid"/>

</xs:sequence>

<xs:attribute name="Id" type="AttributeTypeGuid" use="required"/>

</xs:complexType>

Listing D.35: Attribute type

284

D.8 Element Guid’s

All guids are based on the Guid datatype

<xs:simpleType name="Guid">

<xs:annotation>

<xs:documentation xml:lang="en">

The representation of a GUID, generally the id of an element.

Sometimes, notations include curly brackets. In this standard we use

GUIDs without those brackets.

</xs:documentation>

</xs:annotation>

<xs:restriction base="xs:string">

<xs:pattern value="[a-fA-F0-9]{8}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-fA-F0

-9]{4}-[a-fA-F0-9]{12}"/>

</xs:restriction>

</xs:simpleType>

Listing D.36: Guid type

<xs:simpleType name="TransactionKindGuid">

<xs:annotation>

<xs:documentation xml:lang="en">

The representation of a TransactionKindId, generally the id of an

element.

This type is used to distinguish between usage of guids between element

types. No specific range is used for element types.

</xs:documentation>

</xs:annotation>

<xs:restriction base="Guid">

</xs:restriction>

</xs:simpleType>

Listing D.37: Transaction kind guid

<xs:simpleType name="TransactionProcessStepKindGuid">

<xs:annotation>

<xs:documentation xml:lang="en">

The representation of a TransactionProcessStepKindId, generally the id

of an element.

This type is used to distinguish between usage of guids between element

types. No specific range is used for element types.

</xs:documentation>

</xs:annotation>

<xs:restriction base="Guid">

</xs:restriction>

</xs:simpleType>

Listing D.38: Transaction step kind guid

285

<xs:simpleType name="IndependentFactKindGuid">

<xs:annotation>

<xs:documentation xml:lang="en">

The representation of a IndependentFactKindId, generally the id of an

element.

This type is used to distinguish between usage of guids between element

types. No specific range is used for element types.

</xs:documentation>

</xs:annotation>

<xs:restriction base="Guid">

</xs:restriction>

</xs:simpleType>

Listing D.39: Independent fact kind guid

<xs:simpleType name="AggregateTransactionKindGuid">

<xs:annotation>

<xs:documentation xml:lang="en">

The representation of a AggregateTransactionKindId, generally the id of

an element.

This type is used to distinguish between usage of guids between element

types. No specific range is used for element types.

</xs:documentation>

</xs:annotation>

<xs:restriction base="Guid">

</xs:restriction>

</xs:simpleType>

Listing D.40: Aggregated transaction kind guid

<xs:simpleType name="ElementaryActorRoleGuid">

<xs:annotation>

<xs:documentation xml:lang="en">

The representation of a ElementaryActorRoleId, generally the id of an

element.

This type is used to distinguish between usage of guids between element

types. No specific range is used for element types.

</xs:documentation>

</xs:annotation>

<xs:restriction base="Guid">

</xs:restriction>

</xs:simpleType>

Listing D.41: Elementary actor role guid

<xs:simpleType name="CompositeActorRoleGuid">

<xs:annotation>

286

<xs:documentation xml:lang="en">

The representation of a CompositeActorRoleId, generally the id of an

element.

This type is used to distinguish between usage of guids between element

types. No specific range is used for element types.

</xs:documentation>

</xs:annotation>

<xs:restriction base="Guid">

</xs:restriction>

</xs:simpleType>

Listing D.42: Composite actor role guid

<xs:simpleType name="EntityTypeGuid">

<xs:annotation>

<xs:documentation xml:lang="en">

The representation of a EntityTypeId, generally the id of an element.

This type is used to distinguish between usage of guids between element

types. No specific range is used for element types.

</xs:documentation>

</xs:annotation>

<xs:restriction base="Guid">

</xs:restriction>

</xs:simpleType>

Listing D.43: Entity type guid

<xs:simpleType name="ActorGuid">

<xs:annotation>

<xs:documentation xml:lang="en">

The representation of a ActorId, generally the id of an element.

This type is used to distinguish between usage of guids between element

types. No specific range is used for element types.

</xs:documentation>

</xs:annotation>

<xs:restriction base="Guid">

</xs:restriction>

</xs:simpleType>

Listing D.44: Actor guid

<xs:simpleType name="AttributeTypeGuid">

<xs:annotation>

<xs:documentation xml:lang="en">

The representation of a AttributeTypeId, generally the id of an element

.

This type is used to distinguish between usage of guids between element

types. No specific range is used for element types.

287

</xs:documentation>

</xs:annotation>

<xs:restriction base="Guid">

</xs:restriction>

</xs:simpleType>

Listing D.45: Attribute type guid

<xs:simpleType name="ActionRuleTypeGuid">

<xs:annotation>

<xs:documentation xml:lang="en">

The representation of a ActionRuleTypeId, generally the id of an

element.

This type is used to distinguish between usage of guids between element

types. No specific range is used for element types.

</xs:documentation>

</xs:annotation>

<xs:restriction base="Guid">

</xs:restriction>

</xs:simpleType>

Listing D.46: Action rule type guid

<xs:simpleType name="ConnectionGuid">

<xs:annotation>

<xs:documentation xml:lang="en">

The representation of a ConnectionId, generally the id of an element.

This type is used to distinguish between usage of guids between element

types and connections. No specific range is used for connection

types.

</xs:documentation>

</xs:annotation>

<xs:restriction base="Guid">

</xs:restriction>

</xs:simpleType>

Listing D.47: Connection guid

<xs:simpleType name="DiagramElementGuid">

<xs:annotation>

<xs:documentation xml:lang="en">

The representation of a DiagramElementId, generally the id of an

element.

This type is used to distinguish between usage of guids between element

types. No specific range is used for element types.

</xs:documentation>

</xs:annotation>

<xs:restriction base="Guid">

288

</xs:restriction>

</xs:simpleType>

Listing D.48: Diagram element guid

D.9 Diagram Guid’s

<xs:simpleType name="OrganisationConstructionDiagramGuid">

<xs:annotation>

<xs:documentation xml:lang="en">

The representation of a OrganisationConstructionDiagramId, generally

the id of an element.

This type is used to distinguish between usage of guids between diagram

types. No specific range is used for diagram types.

</xs:documentation>

</xs:annotation>

<xs:restriction base="Guid">

</xs:restriction>

</xs:simpleType>

Listing D.49: Organisation construction diagram guid

<xs:simpleType name="ProcessStructureDiagramGuid">

<xs:annotation>

<xs:documentation xml:lang="en">

The representation of a ProcessStructureDiagramGuid, generally the id

of an element.

This type is used to distinguish between usage of guids between diagram

types. No specific range is used for diagram types.

</xs:documentation>

</xs:annotation>

<xs:restriction base="Guid">

</xs:restriction>

</xs:simpleType>

Listing D.50: Process structure diagram guid

<xs:simpleType name="ActorFunctionDiagramGuid">

<xs:annotation>

<xs:documentation xml:lang="en">

The representation of a ActionFunctionDiagramId, generally the id of an

element.

This type is used to distinguish between usage of guids between diagram

types. No specific range is used for diagram types.

</xs:documentation>

</xs:annotation>

289

<xs:restriction base="Guid">

</xs:restriction>

</xs:simpleType>

Listing D.51: Actor function diagram guid

<xs:simpleType name="ObjectFactDiagramGuid">

<xs:annotation>

<xs:documentation xml:lang="en">

The representation of a ObjectFactDiagramId, generally the id of an

element.

This type is used to distinguish between usage of guids between diagram

types. No specific range is used for diagram types.

</xs:documentation>

</xs:annotation>

<xs:restriction base="Guid">

</xs:restriction>

</xs:simpleType>

Listing D.52: Object fact diagram guid

<xs:simpleType name="TransactionProcessDiagramGuid">

<xs:annotation>

<xs:documentation xml:lang="en">

The representation of a TransactionProcessDiagramId, generally the id

of an element.

This type is used to distinguish between usage of guids between diagram

types. No specific range is used for diagram types.

</xs:documentation>

</xs:annotation>

<xs:restriction base="Guid">

</xs:restriction>

</xs:simpleType>

Listing D.53: Transaction process diagram guid

<xs:simpleType name="ActionRuleDiagramGuid">

<xs:annotation>

<xs:documentation xml:lang="en">

The representation of a ActionRuleDiagramId, generally the id of an

element.

This type is used to distinguish between usage of guids between diagram

types. No specific range is used for diagram types.

</xs:documentation>

</xs:annotation>

<xs:restriction base="Guid">

</xs:restriction>

</xs:simpleType>

290

Listing D.54: Action rule diagram guid

D.10 Element identification

<xs:simpleType name="TransactionKindId">

<xs:annotation>

<xs:documentation>

The transaction_kind_id starts with a capital T followed by an positive

integer.

Optionally followed by a dash and another positive integer.

The positive integers can have leading zeros.

For DEMO4 transactions can start with a TK.

</xs:documentation>

</xs:annotation>

<xs:restriction base="xs:string">

<xs:pattern value="T[K]?[0-9]+([-][0-9]+)?"/>

</xs:restriction>

</xs:simpleType>

Listing D.55: Transaction kind id

<xs:simpleType name="AggregateTransactionKindId">

<xs:annotation>

<xs:documentation>

The aggregate_transaction_kind_id starts with a capital AT followed by

an positive integer.

Optionally followed by a dash and another positive integer.

The positive integers can have leading zeros.

</xs:documentation>

</xs:annotation>

<xs:restriction base="xs:string">

<xs:pattern value="AT[0-9]+([-][0-9]+)?"/>

</xs:restriction>

</xs:simpleType>

Listing D.56: Aggregated transaction kind id

<xs:simpleType name="ActorRoleId">

<xs:annotation>

<xs:documentation>

The actor_role_id starts with a capital A followed by an positive

integer.

Optionally followed by a dash and another positive integer.

The positive integers can have leading zeros.

291

</xs:documentation>

</xs:annotation>

<xs:restriction base="xs:string">

<xs:pattern value="A[0-9]+([-][0-9]+)?"/>

</xs:restriction>

</xs:simpleType>

Listing D.57: Actor role id

<xs:simpleType name="ActorId">

<xs:annotation>

<xs:documentation>

The actor_id starts with a capital ACT followed by an positive integer.

Optionally followed by a dash and another positive integer.

The positive integers can have leading zeros.

</xs:documentation>

</xs:annotation>

<xs:restriction base="xs:string">

<xs:pattern value="ACT[0-9]+([-][0-9]+)?"/>

</xs:restriction>

</xs:simpleType>

Listing D.58: Actor id

<xs:simpleType name="CompositeActorRoleId">

<xs:annotation>

<xs:documentation>

The composite_actor_role_id starts with a capital CA followed by an

positive integer.

Optionally followed by a dash and another positive integer.

The positive integers can have leading zeros.

</xs:documentation>

</xs:annotation>

<xs:restriction base="xs:string">

<xs:pattern value="CA[0-9]+([-][0-9]+)?"/>

</xs:restriction>

</xs:simpleType>

Listing D.59: Composite actor role id

<xs:simpleType name="FactKindId">

<xs:annotation>

<xs:documentation>

The fact_kind_id starts with a capital F followed by an positive

integer.

Optionally followed by a dash and another positive integer.

The positive integers can have leading zeros.

</xs:documentation>

292

</xs:annotation>

<xs:restriction base="xs:string">

<xs:pattern value="F[0-9]+([-][0-9]+)?"/>

</xs:restriction>

</xs:simpleType>

Listing D.60: Fact kind id

<xs:simpleType name="ProductKindId">

<xs:annotation>

<xs:documentation>

The ProductKindId starts with a capital P followed by an positive

integer.

Optionally followed by a dash and another positive integer.

The positive integers can have leading zeros.

</xs:documentation>

</xs:annotation>

<xs:restriction base="xs:string">

<xs:pattern value="P[0-9]+([-][0-9]+)?"/>

</xs:restriction>

</xs:simpleType>

Listing D.61: Product kind id

D.11 Enumerations

<xs:simpleType name="TransactionSort">

<xs:annotation>

<xs:documentation>

The transactionsort is enumerated to list all possible names.

The enumeration "physical" is derived from the PhD of Joop De Jong.

</xs:documentation>

</xs:annotation>

<xs:restriction base="xs:string">

<xs:enumeration value="unknown"/>

<xs:enumeration value="original"/>

<xs:enumeration value="informational"/>

<xs:enumeration value="documental"/>

<xs:enumeration value="physical"/>

</xs:restriction>

</xs:simpleType>

Listing D.62: Transaction sorts

<xs:simpleType name="Cardinality">

<xs:annotation>

293

<xs:documentation>

The cardinality options for a connection can be any number or infinity.

Infinity is represented with a "*".

Cardinality is given on both ends of the connection.

</xs:documentation>

</xs:annotation>

<xs:restriction base="xs:string">

<xs:pattern value="[1-9][0-9]*|[*]"/>

</xs:restriction>

</xs:simpleType>

Listing D.63: Cardinality

<xs:simpleType name="GeneralStepKind">

<xs:annotation>

<xs:documentation>

The general step kind is enumerated to list all possible transaction

step abbreviations.

</xs:documentation>

</xs:annotation>

<xs:restriction base="xs:string">

<xs:enumeration value="Initial">

<xs:annotation>

<xs:documentation>

The initial step. This is where the process within a transaction

starts and ends.

</xs:documentation>

</xs:annotation>

</xs:enumeration>

<xs:enumeration value="Request">

<xs:annotation>

<xs:documentation>

The request step.

</xs:documentation>

</xs:annotation>

</xs:enumeration>

<xs:enumeration value="Requested">

<xs:annotation>

<xs:documentation>

The requested state.

</xs:documentation>

</xs:annotation>

</xs:enumeration>

<xs:enumeration value="Promise">

<xs:annotation>

<xs:documentation>

The promise step.

294

</xs:documentation>

</xs:annotation>

</xs:enumeration>

<xs:enumeration value="Promised">

<xs:annotation>

<xs:documentation>

The promised state.

</xs:documentation>

</xs:annotation>

</xs:enumeration>

<xs:enumeration value="Execute">

<xs:annotation>

<xs:documentation>

The execute step.

</xs:documentation>

</xs:annotation>

</xs:enumeration>

<xs:enumeration value="Executed">

<xs:annotation>

<xs:documentation>

The execute state.

</xs:documentation>

</xs:annotation>

</xs:enumeration>

<xs:enumeration value="State">

<xs:annotation>

<xs:documentation>

The state step. Does not exist in DEMO 4.

</xs:documentation>

</xs:annotation>

</xs:enumeration>

<xs:enumeration value="Declare">

<xs:annotation>

<xs:documentation>

The state step in DEMO4.

</xs:documentation>

</xs:annotation>

</xs:enumeration>

<xs:enumeration value="Stated">

<xs:annotation>

<xs:documentation>

The stated state. Does not exist in DEMO 4.

</xs:documentation>

</xs:annotation>

</xs:enumeration>

<xs:enumeration value="Declared">

<xs:annotation>

295

<xs:documentation>

The stated state in DEMO4.

</xs:documentation>

</xs:annotation>

</xs:enumeration>

<xs:enumeration value="Accept">

<xs:annotation>

<xs:documentation>

The accept step.

</xs:documentation>

</xs:annotation>

</xs:enumeration>

<xs:enumeration value="Accepted">

<xs:annotation>

<xs:documentation>

The accepted state.

</xs:documentation>

</xs:annotation>

</xs:enumeration>

<xs:enumeration value="Decline">

<xs:annotation>

<xs:documentation>

The decline step.

</xs:documentation>

</xs:annotation>

</xs:enumeration>

<xs:enumeration value="Declined">

<xs:annotation>

<xs:documentation>

The declined state.

</xs:documentation>

</xs:annotation>

</xs:enumeration>

<xs:enumeration value="Quit">

<xs:annotation>

<xs:documentation>

The quit step. Does not exist in DEMO 4.

</xs:documentation>

</xs:annotation>

</xs:enumeration>

<xs:enumeration value="Quited">

<xs:annotation>

<xs:documentation>

The quited state. Does not exist in DEMO 4.

</xs:documentation>

</xs:annotation>

</xs:enumeration>

296

<xs:enumeration value="Reject">

<xs:annotation>

<xs:documentation>

The reject step.

</xs:documentation>

</xs:annotation>

</xs:enumeration>

<xs:enumeration value="Rejected">

<xs:annotation>

<xs:documentation>

The reject state.

</xs:documentation>

</xs:annotation>

</xs:enumeration>

<xs:enumeration value="Stop">

<xs:annotation>

<xs:documentation>

The stop step.

</xs:documentation>

</xs:annotation>

</xs:enumeration>

<xs:enumeration value="Stopped">

<xs:annotation>

<xs:documentation>

The stopped state.

</xs:documentation>

</xs:annotation>

</xs:enumeration>

<xs:enumeration value="RevokeRequest">

<xs:annotation>

<xs:documentation>

The revoke request step.

</xs:documentation>

</xs:annotation>

</xs:enumeration>

<xs:enumeration value="RevokedRequest">

<xs:annotation>

<xs:documentation>

The revoke requested state.

</xs:documentation>

</xs:annotation>

</xs:enumeration>

<xs:enumeration value="RevokeRequestAllow">

<xs:annotation>

<xs:documentation>

The revoke request allow step.

297

</xs:documentation>

</xs:annotation>

</xs:enumeration>

<xs:enumeration value="RevokeRequestAllowed">

<xs:annotation>

<xs:documentation>

The revoke request allowed state.

</xs:documentation>

</xs:annotation>

</xs:enumeration>

<xs:enumeration value="RevokeRequestRefuse">

<xs:annotation>

<xs:documentation>

The revoke request refuse step.

</xs:documentation>

</xs:annotation>

</xs:enumeration>

<xs:enumeration value="RevokeRequestRefused">

<xs:annotation>

<xs:documentation>

The revoke request refused state.

</xs:documentation>

</xs:annotation>

</xs:enumeration>

<xs:enumeration value="RevokePromise">

<xs:annotation>

<xs:documentation>

The revoke promise step.

</xs:documentation>

</xs:annotation>

</xs:enumeration>

<xs:enumeration value="RevokedPromise">

<xs:annotation>

<xs:documentation>

The revoke promised state.

</xs:documentation>

</xs:annotation>

</xs:enumeration>

<xs:enumeration value="RevokePromiseAllow">

<xs:annotation>

<xs:documentation>

The revoke promise allow step.

</xs:documentation>

</xs:annotation>

</xs:enumeration>

<xs:enumeration value="RevokePromiseAllowed">

298

<xs:annotation>

<xs:documentation>

The revoke promise allowed state.

</xs:documentation>

</xs:annotation>

</xs:enumeration>

<xs:enumeration value="RevokePromiseRefuse">

<xs:annotation>

<xs:documentation>

The revoke promise refuse step.

</xs:documentation>

</xs:annotation>

</xs:enumeration>

<xs:enumeration value="RevokePromiseRefused">

<xs:annotation>

<xs:documentation>

The revoke promise refused state.

</xs:documentation>

</xs:annotation>

</xs:enumeration>

<xs:enumeration value="RevokeState">

<xs:annotation>

<xs:documentation>

The revoke state step. Does not exist in DEMO 4.

</xs:documentation>

</xs:annotation>

</xs:enumeration>

<xs:enumeration value="RevokedState">

<xs:annotation>

<xs:documentation>

The revoke stated state. Does not exist in DEMO 4.

</xs:documentation>

</xs:annotation>

</xs:enumeration>

<xs:enumeration value="RevokeStateAllow">

<xs:annotation>

<xs:documentation>

The revoke state allow step. Does not exist in DEMO 4.

</xs:documentation>

</xs:annotation>

</xs:enumeration>

<xs:enumeration value="RevokeStateAllowed">

<xs:annotation>

<xs:documentation>

The revoke state allowed state. Does not exist in DEMO 4.

</xs:documentation>

299

</xs:annotation>

</xs:enumeration>

<xs:enumeration value="RevokeStateRefuse">

<xs:annotation>

<xs:documentation>

The revoke state refuse step. Does not exist in DEMO 4.

</xs:documentation>

</xs:annotation>

</xs:enumeration>

<xs:enumeration value="RevokeStateRefused">

<xs:annotation>

<xs:documentation>

The revoke state refused state. Does not exist in DEMO 4.

</xs:documentation>

</xs:annotation>

</xs:enumeration>

<xs:enumeration value="RevokeDeclare">

<xs:annotation>

<xs:documentation>

The revoke state step in DEMO4.

</xs:documentation>

</xs:annotation>

</xs:enumeration>

<xs:enumeration value="RevokedDeclare">

<xs:annotation>

<xs:documentation>

The revoke stated state in DEMO4.

</xs:documentation>

</xs:annotation>

</xs:enumeration>

<xs:enumeration value="RevokeDeclareAllow">

<xs:annotation>

<xs:documentation>

The revoke state allow step in DEMO4.

</xs:documentation>

</xs:annotation>

</xs:enumeration>

<xs:enumeration value="RevokeDeclareAllowed">

<xs:annotation>

<xs:documentation>

The revoke state allowed state in DEMO4.

</xs:documentation>

</xs:annotation>

</xs:enumeration>

<xs:enumeration value="RevokeDeclareRefuse">

<xs:annotation>

300

<xs:documentation>

The revoke state refuse step in DEMO4.

</xs:documentation>

</xs:annotation>

</xs:enumeration>

<xs:enumeration value="RevokeDeclareRefused">

<xs:annotation>

<xs:documentation>

The revoke state refused state in DEMO4.

</xs:documentation>

</xs:annotation>

</xs:enumeration>

<xs:enumeration value="RevokeAccept">

<xs:annotation>

<xs:documentation>

The revoke accept step.

</xs:documentation>

</xs:annotation>

</xs:enumeration>

<xs:enumeration value="RevokedAccept">

<xs:annotation>

<xs:documentation>

The revoke accepted state.

</xs:documentation>

</xs:annotation>

</xs:enumeration>

<xs:enumeration value="RevokeAcceptAllow">

<xs:annotation>

<xs:documentation>

The revoke accept allow step.

</xs:documentation>

</xs:annotation>

</xs:enumeration>

<xs:enumeration value="RevokeAcceptAllowed">

<xs:annotation>

<xs:documentation>

The revoke accept allowed state.

</xs:documentation>

</xs:annotation>

</xs:enumeration>

<xs:enumeration value="RevokeAcceptRefuse">

<xs:annotation>

<xs:documentation>

The revoke accept refuse step.

</xs:documentation>

</xs:annotation>

301

</xs:enumeration>

<xs:enumeration value="RevokeAcceptRefused">

<xs:annotation>

<xs:documentation>

The revoke accept refused state.

</xs:documentation>

</xs:annotation>

</xs:enumeration>

</xs:restriction>

</xs:simpleType>

Listing D.64: General Step Kind

D.12 Names

<xs:simpleType name="TransactionKindName">

<xs:annotation>

<xs:documentation>

The transaction_kind_name are lower case words separated by spaces.

The name can be empty.

</xs:documentation>

</xs:annotation>

<xs:restriction base="xs:string">

<xs:pattern value="[a-z]*([][a-z]+)*"/>

</xs:restriction>

</xs:simpleType>

Listing D.65: Transaction kind name

<xs:simpleType name="ActorRoleName">

<xs:annotation>

<xs:documentation>

The actor_role_name are lower case words separated by spaces.

The name can be empty.

</xs:documentation>

</xs:annotation>

<xs:restriction base="xs:string">

<xs:pattern value="[a-z]*([][a-z]+)*"/>

</xs:restriction>

</xs:simpleType>

Listing D.66: Actor role name

<xs:simpleType name="ActorName">

<xs:annotation>

<xs:documentation>

302

The actor_role_name are lower case words separated by spaces.

The name can be empty.

</xs:documentation>

</xs:annotation>

<xs:restriction base="xs:string">

<xs:pattern value="[a-z]*([][a-z]+)*"/>

</xs:restriction>

</xs:simpleType>

Listing D.67: Actor name

<xs:simpleType name="ObjectClassName">

<xs:annotation>

<xs:documentation>

The object_class_name are upper case words separated by spaces.

The name cannot be empty.

</xs:documentation>

</xs:annotation>

<xs:restriction base="xs:string">

<xs:pattern value="[A-Z]+([][A-Z]+)*"/>

</xs:restriction>

</xs:simpleType>

Listing D.68: Object class name

<xs:simpleType name="FactKindName">

<xs:annotation>

<xs:documentation>

The fact_kind_name are lower case words separated by spaces.

The name can be empty.

</xs:documentation>

</xs:annotation>

<xs:restriction base="xs:string">

<xs:pattern value="[a-z]+([][a-z]+)*"/>

</xs:restriction>

</xs:simpleType>

Listing D.69: Fact kind name

<xs:simpleType name="DefiniteEntityVariable">

<xs:annotation>

<xs:documentation>

The definite_entity_variable are "lower case words between brackets" or

"capitalised words".

[entity] | ENTITY

The name can not be empty.

</xs:documentation>

</xs:annotation>

303

<xs:restriction base="xs:string">

<xs:pattern value="\[[a-z]+([][a-z]+)*\]|[A-Z][a-z]*([][A-Z][a-z]*)*"/>

</xs:restriction>

</xs:simpleType>

Listing D.70: Definite Entity Variable name

<xs:simpleType name="ActionRuleName">

<xs:annotation>

<xs:documentation>

The ActionRuleName are "lower case words between pointy hooks".

<condition>

The name can not be empty.

</xs:documentation>

</xs:annotation>

<xs:restriction base="xs:string">

<xs:pattern value="[<][a-z]+([][a-z]+)*[>]"/>

</xs:restriction>

</xs:simpleType>

Listing D.71: Action rule name

<xs:simpleType name="DEMOModelName">

<xs:annotation>

<xs:documentation>

The DEMOModelName are "lower case words separated by spaces".

The name can not be empty.

</xs:documentation>

</xs:annotation>

<xs:restriction base="xs:string">

<xs:pattern value="[a-zA-Z]+([][a-zA-Z]+)*"/>

</xs:restriction>

</xs:simpleType>

Listing D.72: DEMO model name

D.13 Relation Elements

<xs:complexType name="Connection">

<xs:sequence>

<xs:choice>

Listing D.73: Contained in EAR

<xs:element name="EARContainedInCAR">

<xs:complexType>

304

<xs:sequence>

<xs:element name="FromElementaryActorRole" type="

ElementaryActorRoleGuid">

</xs:element>

<xs:element name="ToCompositeActorRole" type="

CompositeActorRoleGuid">

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

Listing D.74: EAR contained in CAR

<xs:element name="CARContainedInCAR">

<xs:complexType>

<xs:sequence>

<xs:element name="FromCompositeActorRole" type="

CompositeActorRoleGuid">

</xs:element>

<xs:element name="ToCompositeActorRole" type="

CompositeActorRoleGuid">

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

Listing D.75: CAR contained in CAR

<xs:element name="ETKContainedInCAR">

<xs:complexType>

<xs:sequence>

<xs:element name="FromTransactionKind" type="TransactionKindGuid">

</xs:element>

<xs:element name="ToCompositeActorRole" type="

CompositeActorRoleGuid">

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

Listing D.76: ETK contained in CAR

<xs:element name="ETKContainedInATK">

<xs:complexType>

<xs:sequence>

<xs:element name="FromTransactionKind" type="TransactionKindGuid">

</xs:element>

<xs:element name="ToAggregateTransactionKind" type="

AggregateTransactionKindGuid">

305

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

Listing D.77: ETK contained in ATK

<xs:element name="ConcernsETTK">

<xs:complexType>

<xs:sequence>

<xs:element name="FromEntityType" type="EntityTypeGuid">

</xs:element>

<xs:element name="ToTransactionKind" type="TransactionKindGuid">

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

Listing D.78: Concerns

<xs:element name="InitiatorEAR">

<xs:complexType>

<xs:sequence>

<xs:element name="FromElementaryActorRole" type="

ElementaryActorRoleGuid">

</xs:element>

<xs:element name="ToTransactionKind" type="TransactionKindGuid">

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

Listing D.79: Initiator EAR

<xs:element name="InitiatorCAR">

<xs:complexType>

<xs:sequence>

<xs:element name="FromCompositeActorRole" type="

CompositeActorRoleGuid">

</xs:element>

<xs:element name="ToTransactionKind" type="TransactionKindGuid">

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

Listing D.80: Initiator CAR

306

<xs:element name="ExecutorEAR">

<xs:complexType>

<xs:sequence>

<xs:element name="FromTransactionKind" type="TransactionKindGuid">

</xs:element>

<xs:element name="ToElementaryActorRole" type="

ElementaryActorRoleGuid">

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

Listing D.81: Executor EAR

<xs:element name="ExecutorCAR">

<xs:complexType>

<xs:sequence>

<xs:element name="FromTransactionKind" type="TransactionKindGuid">

</xs:element>

<xs:element name="ToCompositeActorRole" type="

CompositeActorRoleGuid">

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

Listing D.82: Executor CAR

<xs:element name="InterstrictionATEAR">

<xs:complexType>

<xs:sequence>

<xs:element name="FromAggregateTransactionKind" type="

AggregateTransactionKindGuid">

</xs:element>

<xs:element name="ToElementaryActorRole" type="

ElementaryActorRoleGuid">

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

Listing D.83: Access AT to EAR

<xs:element name="InterstrictionATCAR" >

<xs:complexType>

<xs:sequence>

<xs:element name="FromAggregateTransactionKind" type="

AggregateTransactionKindGuid">

307

</xs:element>

<xs:element name="ToCompositeActorRole" type="

CompositeActorRoleGuid">

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

Listing D.84: Access AT to CAR

<xs:element name="InterstrictionTEAR">

<xs:complexType>

<xs:sequence>

<xs:element name="FromTransactionKind" type="TransactionKindGuid">

</xs:element>

<xs:element name="ToElementaryActorRole" type="

ElementaryActorRoleGuid">

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

Listing D.85: Access TK to EAR

<xs:element name="InterstrictionTCAR">

<xs:complexType>

<xs:sequence>

<xs:element name="FromTransactionKind" type="TransactionKindGuid">

</xs:element>

<xs:element name="ToCompositeActorRole" type="

CompositeActorRoleGuid">

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

Listing D.86: Access TK to CAR

<xs:element name="SpecializationET">

<xs:complexType>

<xs:sequence>

<xs:element name="FromEntityType" type="EntityTypeGuid">

</xs:element>

<xs:element name="ToEntityType" type="EntityTypeGuid">

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

308

Listing D.87: Specialisation ET

<xs:element name="AggregationET">

<xs:complexType>

<xs:sequence>

<xs:element name="FromEntityType" type="EntityTypeGuid">

</xs:element>

<xs:element name="ToEntityType" type="EntityTypeGuid">

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

Listing D.88: Aggregation ET

<xs:element name="GeneralizationET">

<xs:complexType>

<xs:sequence>

<xs:element name="FromEntityType" type="EntityTypeGuid">

</xs:element>

<xs:element name="ToEntityType" type="EntityTypeGuid">

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

Listing D.89: Generalisation of ET

<xs:element name="ExcludesET">

<xs:complexType>

<xs:sequence>

<xs:element name="FromEntityType" type="EntityTypeGuid">

</xs:element>

<xs:element name="ToEntityType" type="EntityTypeGuid">

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

Listing D.90: Excludes ET

<xs:element name="ExcludesRF">

<xs:complexType>

<xs:sequence>

<xs:element name="FromConnection" type="ConnectionGuid">

</xs:element>

<xs:element name="ToConnection" type="ConnectionGuid">

309

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

Listing D.91: Excludes relation

<xs:element name="WaitConditionTPSK">

<xs:complexType>

<xs:sequence>

<xs:element name="FromTransactionProcessStepKind" type="

TransactionProcessStepKindGuid">

</xs:element>

<xs:element name="ToTransactionProcessStepKind" type="

TransactionProcessStepKindGuid">

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

Listing D.92: Wait TPSK

<xs:element name="InitiationTPSK">

<xs:complexType>

<xs:sequence>

<xs:element name="FromTransactionProcessStepKind" type="

TransactionProcessStepKindGuid">

</xs:element>

<xs:element name="ToTransactionProcessStepKind" type="

TransactionProcessStepKindGuid">

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

Listing D.93: Initiation TPSK

<xs:element name="RoleOfEAR">

<xs:complexType>

<xs:sequence>

<xs:element name="FromElementaryActorRole" type="

ElementaryActorRoleGuid">

</xs:element>

<xs:element name="ToActor" type="ActorGuid">

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

310

Listing D.94: Role of EAR

<xs:element name="RoleOfCAR">

<xs:complexType>

<xs:sequence>

<xs:element name="FromCompositeActorRole" type="

CompositeActorRoleGuid">

</xs:element>

<xs:element name="ToActor" type="ActorGuid">

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

Listing D.95: Role of CAR

<xs:complexType name="Connection">

<xs:sequence>

<xs:choice>

Listing D.96: Connections (start)

</xs:choice>

</xs:sequence>

<xs:attribute name="Id" type="ConnectionGuid" use="required"/>

<xs:attribute name="Name" type="FactKindName" use="optional"/>

<xs:attribute name="FromCardinality" type="Cardinality" use="required"/>

<xs:attribute name="ToCardinality" type="Cardinality" use="required"/>

</xs:complexType>

Listing D.97: Connections (end)

D.14 Diagram Elements

<xs:complexType name="TransactionKindElement">

<xs:sequence>

<xs:element name="ReferenceId" type="TransactionKindGuid"/>

<xs:element name="Initiator" type="xs:boolean"/>

<xs:element name="Location" type="Location"/>

<xs:element name="Size" type="Size"/>

</xs:sequence>

<xs:attribute name="Id" type="DiagramElementGuid" use="required"/>

</xs:complexType>

Listing D.98: Transaction kind element

311

<xs:complexType name="IndependentFactKindElement">

<xs:sequence>

<xs:element name="ReferenceId" type="IndependentFactKindGuid"/>

<xs:element name="Location" type="Location"/>

<xs:element name="Size" type="Size"/>

</xs:sequence>

<xs:attribute name="Id" type="DiagramElementGuid" use="required"/>

</xs:complexType>

Listing D.99: Independant fact element

<xs:complexType name="TransactionProcessStepKindElement">

<xs:sequence>

<xs:element name="ReferenceId" type="TransactionProcessStepKindGuid"/>

<xs:element name="Location" type="Location"/>

<xs:element name="Size" type="Size"/>

</xs:sequence>

<xs:attribute name="Id" type="DiagramElementGuid" use="required"/>

</xs:complexType>

Listing D.100: Transaction proces step kind element

<xs:complexType name="AggregateTransactionKindElement">

<xs:sequence>

<xs:element name="ReferenceId" type="AggregateTransactionKindGuid"/>

<xs:element name="Location" type="Location"/>

<xs:element name="Size" type="Size"/>

</xs:sequence>

<xs:attribute name="Id" type="DiagramElementGuid" use="required"/>

</xs:complexType>

Listing D.101: Aggregate transaction kind element

<xs:complexType name="ElementaryActorRoleElement">

<xs:sequence>

<xs:element name="ReferenceId" type="ElementaryActorRoleGuid"/>

<xs:element name="Location" type="Location"/>

<xs:element name="Size" type="Size"/>

</xs:sequence>

<xs:attribute name="Id" type="DiagramElementGuid" use="required"/>

</xs:complexType>

Listing D.102: Elementary actor role element

<xs:complexType name="CompositeActorRoleElement">

<xs:sequence>

<xs:element name="ReferenceId" type="CompositeActorRoleGuid"/>

<xs:element name="Location" type="Location"/>

312

<xs:element name="Size" type="Size"/>

</xs:sequence>

<xs:attribute name="Id" type="DiagramElementGuid" use="required"/>

</xs:complexType>

Listing D.103: Composite actor role element

<xs:complexType name="ActorElement">

<xs:sequence>

<xs:element name="ReferenceId" type="CompositeActorRoleGuid"/>

<xs:element name="Location" type="Location"/>

<xs:element name="Size" type="Size"/>

</xs:sequence>

<xs:attribute name="Id" type="DiagramElementGuid" use="required"/>

</xs:complexType>

Listing D.104: Actor element

<xs:complexType name="EntityTypeElement">

<xs:sequence>

<xs:element name="ReferenceId" type="EntityTypeGuid"/>

<xs:element name="Location" type="Location"/>

<xs:element name="Size" type="Size"/>

</xs:sequence>

<xs:attribute name="Id" type="DiagramElementGuid" use="required"/>

</xs:complexType>

Listing D.105: Entity type element

<xs:complexType name="ConnectionElement">

<xs:sequence>

<xs:element name="ReferenceId" type="ConnectionGuid"/>

<xs:element name="Hidden" type="xs:boolean"/>

<xs:element name="Line" type="Line"/>

</xs:sequence>

<xs:attribute name="Id" type="DiagramElementGuid" use="required"/>

</xs:complexType>

Listing D.106: Connection element

D.15 Validation Result

<xs:complexType name="ValidationResult">

<xs:all>

<xs:element name="Number" type="xs:string" minOccurs="0" maxOccurs="1"></

xs:element>

313

<xs:element name="Message" type="xs:string" minOccurs="0" maxOccurs="1"><

/xs:element>

<xs:element name="Id" type="Guid" minOccurs="0" maxOccurs="1"></

xs:element>

<xs:element name="Identification" type="xs:string" minOccurs="0"

maxOccurs="1"></xs:element>

<xs:element name="Name" type="xs:string" minOccurs="0" maxOccurs="1"></

xs:element>

</xs:all>

</xs:complexType>

Listing D.107: Validation results

D.16 Diagrams

<xs:complexType name="OrganisationConstructionDiagram">

<xs:all>

<xs:element name="Name" type="xs:string"/>

<xs:element name="Formulation" type="xs:string"/>

<xs:element name="TransactionKindElements" minOccurs="0" maxOccurs="1">

<xs:annotation>

<xs:documentation>

A listing of all available Transaction Kinds Elements in this

diagram.

All references to Transaction Kinds must be available in the

DEMOmodel\TransactionKinds List.

</xs:documentation>

</xs:annotation>

<xs:complexType>

<xs:sequence>

<xs:element name="TransactionKindElement" type="

TransactionKindElement" minOccurs="1" maxOccurs="unbounded">

<xs:annotation>

<xs:documentation>

A Transaction Kind Element can be added. When the

TransactionKindElements is present,

a minimum of one TransactionKindElement must be added.

</xs:documentation>

</xs:annotation>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="AggregateTransactionKindElements" minOccurs="0"

maxOccurs="1">

<xs:annotation>

314

<xs:documentation>

A listing of all available Aggregate Transaction Kinds Elements.

All references to Aggregate Transaction Kinds must be available in

the DEMOmodel\AggregateTransactionKinds List.

</xs:documentation>

</xs:annotation>

<xs:complexType>

<xs:sequence>

<xs:element name="AggregateTransactionKindElement" type="

AggregateTransactionKindElement" minOccurs="1" maxOccurs="

unbounded">

<xs:annotation>

<xs:documentation>

A Aggregate Transaction Kind Element can be added. When the

AggregateTransactionKindElements is present,

a minimum of one AggregateTransactionKindElement must be added

.

</xs:documentation>

</xs:annotation>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="ElementaryActorRoleElements" minOccurs="0" maxOccurs="1

">

<xs:annotation>

<xs:documentation>

A listing of all available Elementary Actor Role Elements.

All references to Elementary Actor Roles must be available in the

DEMOmodel\ElementaryActorRoles List.

</xs:documentation>

</xs:annotation>

<xs:complexType>

<xs:sequence>

<xs:element name="ElementaryActorRoleElement" type="

ElementaryActorRoleElement" minOccurs="1" maxOccurs="unbounded">

<xs:annotation>

<xs:documentation>

A Elementary Actor Role Element can be added. When the

ElementaryActorRoleElements is present,

a minimum of one ElementaryActorRoleElement must be added.

</xs:documentation>

</xs:annotation>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

315

<xs:element name="CompositeActorRoleElements" minOccurs="0" maxOccurs="1"

>

<xs:annotation>

<xs:documentation>

A listing of all available Composite Actor Role Elements.

All references to Composite Actor Roles must be available in the

DEMOmodel\CompositeActorRoles List.

</xs:documentation>

</xs:annotation>

<xs:complexType>

<xs:sequence>

<xs:element name="CompositeActorRoleElement" type="

CompositeActorRoleElement" minOccurs="1" maxOccurs="unbounded">

<xs:annotation>

<xs:documentation>

A Composite Actor Role Element can be added. When the

CompositeActorRoleElements is present,

a minimum of one CompositeActorRoleElement must be added.

</xs:documentation>

</xs:annotation>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="ConnectionElements" minOccurs="0" maxOccurs="1">

<xs:annotation>

<xs:documentation>

A listing of all available Connection Elements.

All references to Connections must be available in the DEMOmodel\

Connections List.

</xs:documentation>

</xs:annotation>

<xs:complexType>

<xs:sequence>

<xs:element name="ConnectionElement" type="ConnectionElement"

minOccurs="1" maxOccurs="unbounded">

<xs:annotation>

<xs:documentation>

A Connection Element can be added. When the ConnectionElements

is present,

a minimum of one ConnectionElement must be added.

</xs:documentation>

</xs:annotation>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

316

</xs:all>

<xs:attribute name="Id" type="OrganisationConstructionDiagramGuid" use="

required"/>

</xs:complexType>

Listing D.108: Construction diagram

<xs:complexType name="ProcessStructureDiagram">

<xs:all>

<xs:element name="Name" type="xs:string"/>

<xs:element name="Formulation" type="xs:string"/>

<xs:element name="TransactionKindElements" minOccurs="0" maxOccurs="1">

<xs:annotation>

<xs:documentation>

A listing of all available Transaction Kind Elements.

All references to TransactionKinds must be available in the

DEMOmodel\TransactionKinds List.

</xs:documentation>

</xs:annotation>

<xs:complexType>

<xs:sequence>

<xs:element name="TransactionKindElement" type="

TransactionKindElement" minOccurs="1" maxOccurs="unbounded">

<xs:annotation>

<xs:documentation>

A Transaction Kind Elements can be added. When the

TransactionKindElements is present,

a minimum of one TransactionKindElement must be added.

</xs:documentation>

</xs:annotation>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="ConnectionElements" minOccurs="0" maxOccurs="1">

<xs:annotation>

<xs:documentation>

A listing of all available Connection Elements.

All references to Connections must be available in the DEMOmodel\

Connections List.

</xs:documentation>

</xs:annotation>

<xs:complexType>

<xs:sequence>

<xs:element name="ConnectionElement" type="ConnectionElement"

minOccurs="1" maxOccurs="unbounded">

<xs:annotation>

317

<xs:documentation>

A Connection Element can be added. When the ConnectionElements

is present,

a minimum of one ConnectionElement must be added.

</xs:documentation>

</xs:annotation>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:all>

<xs:attribute name="Id" type="ProcessStructureDiagramGuid" use="required"/>

</xs:complexType>

Listing D.109: Process structure diagram

<xs:complexType name="TransactionProcessDiagram">

<xs:sequence>

<xs:element name="Name" type="xs:string"/>

<xs:element name="Formulation" type="xs:string"/>

<xs:element name="TransactionProcessStepKindElements" minOccurs="0"

maxOccurs="1">

<xs:annotation>

<xs:documentation>

A listing of all available Transaction Process Step Kind Elements.

All references to TransactionProcessStepKinds must be available in

the DEMOmodel\TransactionProcessStepKinds List.

</xs:documentation>

</xs:annotation>

<xs:complexType>

<xs:sequence>

<xs:element name="TransactionProcessStepKindElement" type="

TransactionProcessStepKindElement" minOccurs="1" maxOccurs="

unbounded">

<xs:annotation>

<xs:documentation>

A Transaction Process Step Kind Element can be added. When the

TransactionProcessStepKindElements is present,

a minimum of one TransactionProcessStepKindElement must be

added.

</xs:documentation>

</xs:annotation>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="ConnectionElements" minOccurs="0" maxOccurs="1">

318

<xs:annotation>

<xs:documentation>

A listing of all available Connection Elements.

All references to Connections must be available in the DEMOmodel\

Connections List.

</xs:documentation>

</xs:annotation>

<xs:complexType>

<xs:sequence>

<xs:element name="ConnectionElement" type="ConnectionElement"

minOccurs="1" maxOccurs="unbounded">

<xs:annotation>

<xs:documentation>

A Connection Element can be added. When the ConnectionElements

is present,

a minimum of one ConnectionElement must be added.

</xs:documentation>

</xs:annotation>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

<xs:attribute name="Id" type="TransactionProcessDiagramGuid" use="required"

/>

</xs:complexType>

Listing D.110: Transaction Process diagram

<xs:complexType name="ObjectFactDiagram">

<xs:all>

<xs:element name="Name" type="xs:string"/>

<xs:element name="Formulation" type="xs:string"/>

<xs:element name="EntityTypeElements" minOccurs="0" maxOccurs="1">

<xs:annotation>

<xs:documentation>

A listing of all available Entity Type Elements.

All references to EntityTypes must be available in the DEMOmodel\

EntityTypes List.

</xs:documentation>

</xs:annotation>

<xs:complexType>

<xs:sequence>

<xs:element name="EntityTypeElement" type="EntityTypeElement"

minOccurs="1" maxOccurs="unbounded">

<xs:annotation>

<xs:documentation>

319

A Entity Type Elements can be added. When the

EntityTypeElements is present,

a minimum of one EntityTypeElement must be added.

</xs:documentation>

</xs:annotation>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="ConnectionElements" minOccurs="0" maxOccurs="1">

<xs:annotation>

<xs:documentation>

A listing of all available Connection Elements.

All references to Connections must be available in the DEMOmodel\

Connections List.

</xs:documentation>

</xs:annotation>

<xs:complexType>

<xs:sequence>

<xs:element name="ConnectionElement" type="ConnectionElement"

minOccurs="1" maxOccurs="unbounded">

<xs:annotation>

<xs:documentation>

A Connection Element can be added. When the ConnectionElements

is present,

a minimum of one ConnectionElement must be added.

</xs:documentation>

</xs:annotation>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:all>

<xs:attribute name="Id" type="ObjectFactDiagramGuid" use="required"/>

</xs:complexType>

Listing D.111: Process structure diagram

<xs:complexType name="ActionRuleDiagram">

<xs:sequence>

<xs:element name="Name" type="xs:string"/>

<xs:element name="Formulation" type="xs:string"/>

<xs:element name="TransactionProcessStepKindElements" minOccurs="0"

maxOccurs="1">

<xs:annotation>

<xs:documentation>

A listing of all available Transaction Process Step Kind Elements.

320

All references to TransactionProcessStepKinds must be available in

the DEMOmodel\TransactionProcessStepKinds List.

</xs:documentation>

</xs:annotation>

<xs:complexType>

<xs:sequence>

<xs:element name="TransactionProcessStepKindElement" type="

TransactionProcessStepKindElement" minOccurs="1" maxOccurs="

unbounded">

<xs:annotation>

<xs:documentation>

A Transaction Process Step Kind Element can be added. When the

TransactionProcessStepKindElements is present,

a minimum of one TransactionProcessStepKindElement must be

added.

</xs:documentation>

</xs:annotation>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="ConnectionElements" minOccurs="0" maxOccurs="1">

<xs:annotation>

<xs:documentation>

A listing of all available Connection Elements.

All references to Connections must be available in the DEMOmodel\

Connections List.

</xs:documentation>

</xs:annotation>

<xs:complexType>

<xs:sequence>

<xs:element name="ConnectionElement" type="ConnectionElement"

minOccurs="1" maxOccurs="unbounded">

<xs:annotation>

<xs:documentation>

A Connection Element can be added. When the ConnectionElements

is present,

a minimum of one ConnectionElement must be added.

</xs:documentation>

</xs:annotation>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

<xs:attribute name="Id" type="ActionRuleDiagramGuid" use="required"/>

</xs:complexType>

321

Listing D.112: Action Rule Diagram

<xs:complexType name="ActorFunctionDiagram">

<xs:all>

<xs:element name="Name" type="xs:string"/>

<xs:element name="Formulation" type="xs:string"/>

<xs:element name="ActorElements" minOccurs="0" maxOccurs="1">

<xs:annotation>

<xs:documentation>

A listing of all available Actor Elements.

All references to Actor must be available in the DEMOmodel\Actor

List.

</xs:documentation>

</xs:annotation>

<xs:complexType>

<xs:sequence>

<xs:element name="ActorElement" type="ActorElement" minOccurs="1"

maxOccurs="unbounded">

<xs:annotation>

<xs:documentation>

A Actor Elements can be added. When the ActorElements is

present,

a minimum of one ActorElements must be added.

</xs:documentation>

</xs:annotation>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="ElementaryActorRoleElements" minOccurs="0" maxOccurs="1

">

<xs:annotation>

<xs:documentation>

A listing of all available Elementary Actor Role Elements.

All references to Elementary Actor Roles must be available in the

DEMOmodel\ElementaryActorRoles List.

</xs:documentation>

</xs:annotation>

<xs:complexType>

<xs:sequence>

<xs:element name="ElementaryActorRoleElement" type="

ElementaryActorRoleElement" minOccurs="1" maxOccurs="unbounded">

<xs:annotation>

<xs:documentation>

A Elementary Actor Role Element can be added. When the

ElementaryActorRoleElements is present,

322

a minimum of one ElementaryActorRoleElement must be added.

</xs:documentation>

</xs:annotation>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="CompositeActorRoleElements" minOccurs="0" maxOccurs="1"

>

<xs:annotation>

<xs:documentation>

A listing of all available Composite Actor Role Elements.

All references to Composite Actor Roles must be available in the

DEMOmodel\CompositeActorRoles List.

</xs:documentation>

</xs:annotation>

<xs:complexType>

<xs:sequence>

<xs:element name="CompositeActorRoleElement" type="

CompositeActorRoleElement" minOccurs="1" maxOccurs="unbounded">

<xs:annotation>

<xs:documentation>

A Composite Actor Role Element can be added. When the

CompositeActorRoleElements is present,

a minimum of one CompositeActorRoleElement must be added.

</xs:documentation>

</xs:annotation>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="ConnectionElements" minOccurs="0" maxOccurs="1">

<xs:annotation>

<xs:documentation>

A listing of all available Connection Elements.

All references to Connections must be available in the DEMOmodel\

Connections List.

</xs:documentation>

</xs:annotation>

<xs:complexType>

<xs:sequence>

<xs:element name="ConnectionElement" type="ConnectionElement"

minOccurs="1" maxOccurs="unbounded">

<xs:annotation>

<xs:documentation>

A Connection Element can be added. When the ConnectionElements

is present,

323

a minimum of one ConnectionElement must be added.

</xs:documentation>

</xs:annotation>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:all>

<xs:attribute name="Id" type="ActorFunctionDiagramGuid" use="required"/>

</xs:complexType>

Listing D.113: Actor function diagram

D.17 Action Rules

<xs:complexType name="ActionRuleType">

<xs:sequence>

<xs:element name="Name" type="ActionRuleName"></xs:element>

<xs:element name="Event" type="EventPartType" minOccurs="1" maxOccurs="1"

>

</xs:element>

<xs:element name="Assess" type="AssessPartType" minOccurs="0" maxOccurs="

1">

</xs:element>

<xs:element name="Response" type="IfType" minOccurs="1" maxOccurs="1">

</xs:element>

</xs:sequence>

<xs:attribute name="Id" type="ActionRuleTypeGuid" use="required"/>

</xs:complexType>

Listing D.114: Action Rule Type

<xs:complexType name="EventPartType">

<xs:sequence>

<xs:element name="Agendum" type="ActionType" minOccurs="1" maxOccurs="1">

</xs:element>

<xs:element name="While" type="BlockType" minOccurs="0" maxOccurs="1">

</xs:element>

</xs:sequence>

</xs:complexType>

Listing D.115: Event Part Type

<xs:complexType name="AssessPartType">

<xs:sequence>

<xs:element name="Justice" type="BlockType" minOccurs="0" maxOccurs="

unbounded">

324

</xs:element>

<xs:element name="Sincerity" type="BlockType" minOccurs="0" maxOccurs="

unbounded">

</xs:element>

<xs:element name="Truth" type="FlowType" minOccurs="0" maxOccurs="1">

</xs:element>

</xs:sequence>

</xs:complexType>

Listing D.116: Assess Part Type

<xs:complexType name="ActionType">

<xs:sequence>

<xs:element name="TransactionProcessStepKind" type="

TransactionProcessStepKindGuid" minOccurs="0" maxOccurs="1">

</xs:element>

<xs:element name="With" type="BlockType" minOccurs="0" maxOccurs="

unbounded">

</xs:element>

</xs:sequence>

</xs:complexType>

Listing D.117: Action Type

<xs:complexType name="FlowType">

<xs:sequence>

<xs:choice>

<xs:element name="Foreach" type="ForeachType">

</xs:element>

<xs:element name="If" type="IfType">

</xs:element>

</xs:choice>

</xs:sequence>

</xs:complexType>

Listing D.118: Flow Type

<xs:complexType name="IfType">

<xs:sequence>

<xs:element name="Condition" type="ConditionType" minOccurs="1" maxOccurs

="1">

</xs:element>

<xs:element name="Then" type="BlockType" minOccurs="1" maxOccurs="

unbounded">

</xs:element>

<xs:element name="Else" type="BlockType" minOccurs="0" maxOccurs="

unbounded">

</xs:element>

325

</xs:sequence>

</xs:complexType>

Listing D.119: If Type

<xs:complexType name="BlockType">

<xs:sequence>

<xs:choice>

<xs:element name="Flow" type="FlowType" minOccurs="0" maxOccurs="1">

</xs:element>

<xs:element name="Action" type="ActionType" minOccurs="0" maxOccurs="1"

>

</xs:element>

<xs:element name="AttributeProperty" type="FmReferenceType" minOccurs="

0" maxOccurs="1">

</xs:element>

</xs:choice>

</xs:sequence>

</xs:complexType>

Listing D.120: Block Type

<xs:complexType name="ForeachType">

<xs:sequence>

<xs:element name="Element" type="FactKindName" minOccurs="1" maxOccurs="1

">

</xs:element>

<xs:element name="Collection" type="EntityTypeGuid" minOccurs="1"

maxOccurs="1">

</xs:element>

<xs:element name="Repeating" type="BlockType" minOccurs="1" maxOccurs="

unbounded">

</xs:element>

</xs:sequence>

</xs:complexType>

Listing D.121: For Each Type

<xs:complexType name="ConditionType">

<xs:choice>

<xs:sequence>

<xs:element name="Left" type="ConditionType" minOccurs="1" maxOccurs="1

">

</xs:element>

<xs:element name="Compare" type="xs:string" minOccurs="1" maxOccurs="1"

>

</xs:element>

<xs:element name="Right" type="ConditionType" minOccurs="1" maxOccurs="

1">

326

</xs:element>

</xs:sequence>

<xs:element name="Value" type="xs:string" minOccurs="1" maxOccurs="1">

</xs:element>

<xs:element name="FmReference" type="FmReferenceType" minOccurs="1"

maxOccurs="1">

</xs:element>

</xs:choice>

</xs:complexType>

Listing D.122: Condition Type

<xs:complexType name="FmReferenceType">

<xs:sequence>

<xs:element name="Entity" type="EntityTypeGuid" minOccurs="1" maxOccurs="

1">

</xs:element>

<xs:element name="Attribute" type="AttributeTypeGuid" minOccurs="0"

maxOccurs="1">

</xs:element>

<xs:element name="Connection" type="ConnectionGuid" minOccurs="0"

maxOccurs="1">

</xs:element>

</xs:sequence>

</xs:complexType>

Listing D.123: Fact Model Reference Type

D.18 Extensions

<xs:element name="ExtendedInfo" minOccurs="0">

<xs:complexType>

<xs:sequence>

<xs:any minOccurs="0" maxOccurs="unbounded" processContents="lax"

namespace="##any" />

</xs:sequence>

</xs:complexType>

</xs:element>

Listing D.124: Extended info collection

327

Appendix E

Logical Metamodel

E.1 Core

DEMO(x) =⇒ ConstructionModel(x)

∨ ProcessModel(x)

∨ FactModel(x)

∨ ActionModel(x)

(E.1) DEMO

329

E.2 Construction Metamodel

ConstructionModel(x) =⇒ ConstructionConcept(x)

∨ ConstructionRelation(x)
(E.2) CM

ConstructionConcept(x) =⇒ TransactionKind(x)

∨ ActorRole(x)
(E.3) CMcs

ConstructionRelation(〈s, t〉) =⇒ executor(s, t)

∨ initiator(s, t)

∨ access(s, t)

∨ TKcontainedinATK(s, t)

∨ TKcontainedinCAR(s, t)

∨ ARaccessATK(s, t)

∨ EARcontainedinCAR(s, t)

∨ CARcontainedinCAR(s, t)

(E.4) CMrel

ActorRole(x) =⇒ ElementaryActorRole(x)

Y CompositeActorRole(x)
(E.5) AR

TransactionKind(x) =⇒ ElementaryTransactionKind(x)

Y AggregateTransactionKind(x)
(E.6) TK

ETK

executor(x, y) =⇒ TransactionKind(x) ∧ ActorRole(y) (E.7) TKe

initiator(x, y) =⇒ ActorRole(x) ∧ TransactionKind(y) (E.8) TKi

330

TKcontainedinATK(x, y) =⇒ ElementaryTransactionKind(x)

∧ AggregateTransactionKind(y)
(E.9) TKinATK

TKcontainedinCAR(x, y) =⇒ ElementaryTransactionKind(x)∧
CompositeActorRole(y)

(E.10) TKinCAR

TKcontainedinCAR(x, y)

∧ initiator(p, x)

∧ ElementaryActorRole(p)

=⇒ EARcontainedinCAR(p, y)

(E.11) TKinCARi

TKcontainedinCAR(x, y)

∧ executor(x, p)

∧ ElementaryActorRole(p)

=⇒ EARcontainedinCAR(p, y)

(E.12) TKinCARe

ElementaryTransactionKind(t) =⇒ ∃a [executor(t, a)] (E.13) TKexistAR

ElementaryTransactionKind(t) =⇒ ∃a [initiator(t, a)] (E.14) TKexistARi

ElementaryTransactionKind(x) ∧
ElementaryActorRole(y) ∧

executor(x, y) ∧
initiator(y, x) =⇒ SelfInitiator(y)

(E.15) ARself

331

ATK

ARaccessATK(x, y) =⇒ ActorRole(x) ∧ AggregateTransactionKind(y) (E.16) ARaccATK

FTcontainedinTK(x, y) =⇒ FactType(x) ∧ TransactionKind(y) (E.17) FTinTK

EAR

EARcontainedinCAR(x, y) =⇒ ElementaryActorRole(x)

∧ CompositeActorRole(y)
(E.18) EARinCAR

executor(x, y) ∧
executor(x, z) ∧

ElementaryActorRole(y) ∧
ElementaryActorRole(z) =⇒ y = z

(E.19) EARexs

ARaccessETK(x, y) =⇒ ActorRole(x) ∧ ElementaryTransactionKind(y) (E.20) ARaccETK

ElementaryTransactionKind(x) ∧
ElementaryActorRole(y) ∧
CompositeActorRole(z) ∧

executor(x, y) ∧
executor(x, z) =⇒ EARcontainedinCAR(y, z)

(E.21) TKme

CAR

CARcontainedinCAR(x, y) =⇒ CompositeActorRole(x)

∧ CompositeActorRole(y)
(E.22) CARinCAR

@x, y : [CARcontainedinCAR(x, y) =⇒ CARcontainedinCAR(y, x)] (E.23) CARnocomCAR

332

CARcontainedinCAR(x, y) ∧ CARcontainedinCAR(y, z)

=⇒ CARcontainedinCAR(x, z)
(E.24) CARoverCAR

executor(x, y) ∧ executor(x, z)

∧ ElementaryTransactionKind(x)

∧ CompositeActorRole(y)

∧ CompositeActorRole(z) =⇒ CARcontainedinCAR(z, y)

(E.25) CARcon

EARcontainedinCAR(x, y) ∧
EARcontainedinCAR(x, z) =⇒ y = z

(E.26) EARxinCAR

OCD

ocdDiagram(d) =⇒ DiagramType(d) (E.27) OCDd

ocdDiagramElement(x, d) =⇒ ConstructionConcept(x)

∧ ocdDiagram(d)
(E.28) OCDe

ocdDiagramRelation(r, d) =⇒ ConstructionRelation(r)

∧ ocdDiagram(d)
(E.29) OCDr

ocdDiagramRelation(〈s, t〉) =⇒ executor(s, t)

∨ initiator(s, t)

∨ access(s, t)

∨ ARaccessATK(s, t)

(E.30) OCDrel

333

TPT

tptTable(t) =⇒ TableClass(t) (E.31) TPTd

tptTableElement(〈x, y, z〉 , t) =⇒ tptTable(t)

∧ concern(y, x)

∧ executor(x, z)

(E.32) TPTer

BCT

bctTable(t) =⇒ TableClass(t) (E.33) BCTd

bctTableElement(〈x, y〉 , t) =⇒ bctTable(t)

∧ FTcontainedinTK(x, y)
(E.34) BCTer

334

E.3 Process Metamodel

ProcessModel(x) =⇒ ProcessConcept(x)

∨ ProcessRelation(x)
(E.35) PM

ProcessConcept(x) =⇒ ElementaryTransactionKind(x)

∨ ElementaryActorRole(x)

∨ CompositeActorRole(x)

∨ TransactionProcessStepKind(x)

(E.36) PMcs

ProcessRelation(〈s, t〉) =⇒ TPSKpartofTK(s, t)

∨ TPSKinitTPSK(s, t)
(E.37) PMrel

PSD

psdDiagram(d) =⇒ DiagramType(d) (E.38) PSDd

psdDiagramElement(x, d) =⇒ ProcessConcept(x)

∧ psdDiagram(d)
(E.39) PSDe

psdDiagramRelation(r, d) =⇒ ProcessRelation(r)

∧ psdDiagram(d)
(E.40) PSDr

TPD

tpdDiagram(d) =⇒ DiagramType(d) (E.41) TPDd

tpdDiagramElement(x, d) =⇒ ProcessConcept(x)

∧ tpdDiagram(d)
(E.42) TPDe

tpdDiagramRelation(r, d) =⇒ ProcessRelation(r)

∧ tpdDiagram(d)
(E.43) TPDr

335

GSK

GeneralStepKindRequest(r) =⇒ GeneralStepKind(r)

∧ r ∈ {request, revokerequestrequest,
revokepromiserequest, revokestaterequest,

revokeacceptrequest}

(E.44) GSKr

TPSK

TransactionProcessStepKind(x, g) =⇒ ElementaryTransactionKind(x)∧
GeneralStepKind(g)

(E.45) TPSK

TransactionProcessStepKind(x, y)

∧ TransactionProcessStepKind(x, z)

∧ TransactionKind(x)

∧ GeneralStepKind(y)

∧ GeneralStepKind(z)

=⇒ y = z

(E.46) GSKse

TPSKpartofTK(x, y) =⇒ TransactionKind(x) ∧ ElementaryTransactionKind(y)
(E.47) TKtpsk

TPSKinitTPSK(x, y) =⇒ ∃s, t[TransactionProcessStepKind(x, s)

∧ GeneralStepKind(s)

∧ TransactionProcessStepKind(y, t)

∧ GeneralStepKindRequest(t)]

(E.48) TPSKtpsk

336

E.4 Fact Metamodel

FactModel(x) =⇒ FactConcept(x)

∨ FactRelation(x)
(E.49) FM

FactConcept(x) =⇒ ElementaryTransactionKind(x)

∨ EntityType(x)

∨ CompositeEntityType(x)

(E.50) FMcs

FactRelation(〈s, t〉) =⇒ attribute(s, t)

∨ generalisation(s, t)

∨ specialisation(s, t)

∨ aggregation(s, t)

(E.51) FMrel

OFD

ofdDiagram(d) =⇒ DiagramType(d) (E.52) OFDd

ofdDiagramElement(x, d) =⇒ FactConcept(x)

∧ ofdDiagram(d)
(E.53) OFDe

ofdDiagramRelation(r, d) =⇒ FactRelation(r)

∧ ofdDiagram(d)
(E.54) OFDr

ofdDiagramRelation(〈s, t〉) =⇒ adomain(s, t)

∨ aggregation(s, t)

∨ arange(s, t)

∨ attribute(s, t)

∨ concern(s, t)

∨ event(s, t)

∨ generalisation(s, t)

∨ pdomain(s, t)

∨ prange(s, t)

∨ relation(s, t)

∨ specialisation(s, t)

(E.55) OFDrel

337

ET

concern(x, y) =⇒ ProductKind(x) ∧ ElementaryTransactionKind(y) (E.56) PKconTK

attribute(x, y) =⇒ adomain(x) ∧ arange(y) (E.57) AT

relation(x, y) =⇒ pdomain(x) ∧ prange(y) (E.58) ATrel

FTcontainedinTK(x, y) =⇒ FactType(x) ∧ TransactionKind(y) (E.59) FTinTK

∃x [baseEntity(x) =⇒ event(x)] (E.60) BE

event(x) =⇒ baseEntity(x) (E.61) Event

property1(x, y) =⇒ ¬property2(x, y)

property2(x, y) =⇒ ¬property1(x, y)
(E.62) PT

338

E.5 Action Metamodel

ActionModel(x) =⇒ ActionConcept(x)

∨ ActionRelation(x)
(E.63) AM

ActionConcept(x) =⇒ TransactionProcessStepKind(x)

∨ ActionRule(x)
(E.64) AMcs

ActionRelation(〈s, t〉) =⇒ when(s, t)

∨ while(s, t)

∨ with(s, t)

∨ trigger(s, t)

(E.65) AMrel

ARD

ardDiagram(d) =⇒ DiagramType(d) (E.66) ARDd

ardDiagramElement(x, d) =⇒ ActionConcept(x)

∧ ardDiagram(d)
(E.67) ARDi

ardDiagramRelation(r, d) =⇒ ActionRelation(r)

∧ ardDiagram(d)
(E.68) ARDr

ardDiagramRelation(〈s, t〉) =⇒ when(s, t)

∨ while(s, t)

∨ with(s, t)

∨ trigger(s, t)

(E.69) ARDrel

339

Appendix F

Verification rules programmed

F.1 Construction Metamodel

The propositions of a specific type are implicit programmed in the verification because
all List<>s are of the right type.

public List<TransactionKind> TransactionKinds { get; set; } = new List<

TransactionKind>();

Listing F.1: Elementary Transaction kind

public List<AggregateTransactionKind> AggregateTransactionKinds { get; set;

} = new List<AggregateTransactionKind>();

Listing F.2: Aggregate Transaction kind

public List<ElementaryActorRole> ElementaryActorRoles { get; set; } = new

List<ElementaryActorRole>();

Listing F.3: Elementary Actor Role

public List<CompositeActorRole> CompositeActorRoles { get; set; } = new

List<CompositeActorRole>();

Listing F.4: Composite Actor Role

The formulas explicitly written in the eq. E.6 and eq. E.5 are implicit covered by building
the lists as shown in listing F.5 and listing F.6, respectively.

TransactionKind(x) =⇒ ElementaryTransactionKind(x)

Y AggregateTransactionKind(x)
(E.6 ref) TK

ActorRole(x) =⇒ ElementaryActorRole(x)

Y CompositeActorRole(x)
(E.5 ref) AR

341

transactionkind = new List<BaseKind>();

transactionkind.AddRange(m.TransactionKinds);

transactionkind.AddRange(m.AggregateTransactionKinds);

Listing F.5: Transaction kind (see eq. E.6)

actorrole = new List<BaseKind>();

actorrole.AddRange(m.ElementaryActorRoles);

actorrole.AddRange(m.CompositeActorRoles);

Listing F.6: Actor role (see eq. E.5)

The construction model is build up of actor roles and transactions. This eq. E.2 is
programmed in listing F.7.

ConstructionModel(x) =⇒ ConstructionConcept(x)

∨ ConstructionRelation(x)
(E.2 ref) CM

constructionmodel = new List<BaseKind>();

constructionmodel.AddRange(actorrole);

constructionmodel.AddRange(transactionkind);

Listing F.7: Construction Model (see eq. E.2)

The mutual exclusion formula of a TK (eq. E.6) and AR (eq. E.5) can be checked by the
pieces of program in listing F.8 and listing F.9, respectively.

b = null;

if ((b = m.TransactionKinds.Find(etk => m.AggregateTransactionKinds.Any(

atk => atk.Id == etk.Id))) != null)

{

ErrMessage("CM002", "ETK cannot be also a ATK", b);

}

Listing F.8: Transaction kind exclusion (see eq. E.6)

BaseKind b = null;

if ((b = m.ElementaryActorRoles.Find(ear => m.CompositeActorRoles.Any(car

=> car.Id == ear.Id))) != null)

{

ErrMessage("CM001", "EAR cannot be also a CAR", b);

}

Listing F.9: Actor role exclusion (see eq. E.5)

executor(x, y) =⇒ TransactionKind(x) ∧ ActorRole(y) (E.7 ref) TKe

342

case Connector.CT.ExecutorEAR:

if (null == m.TransactionKinds.Find(x => x.Id == c.Source))

{

ErrMessage("CN001", "No TK in ExecutorEAR as source", c);

}

if (null == m.ElementaryActorRoles.Find(x => x.Id == c.Target))

{

ErrMessage("CN002", "No EAR in ExecutorEAR as target", c);

}

break;

case Connector.CT.ExecutorCAR:

if (null == m.TransactionKinds.Find(x => x.Id == c.Source))

{

ErrMessage("CN011", "No TK in ExecutorCAR as source", c);

}

if (null == m.CompositeActorRoles.Find(x => x.Id == c.Target))

{

ErrMessage("CN012", "No CAR in ExecutorCAR as target", c);

}

break;

Listing F.10: Executor role check (see eq. E.7)

initiator(x, y) =⇒ ActorRole(x) ∧ TransactionKind(y) (E.8 ref) TKi

case Connector.CT.InitiatorEAR:

if (null == m.ElementaryActorRoles.Find(x => x.Id == c.Source))

{

ErrMessage("CN003", "No EAR in InitiatorEAR as source", c);

}

if (null == m.TransactionKinds.Find(x => x.Id == c.Target))

{

ErrMessage("CN004", "No TK in InitiatorEAR as target", c);

}

break;

case Connector.CT.InitiatorCAR:

if (null == m.CompositeActorRoles.Find(x => x.Id == c.Source))

{

ErrMessage("CN005", "No CAR in InitiatorCAR as source", c);

}

if (null == m.TransactionKinds.Find(x => x.Id == c.Target))

{

ErrMessage("CN006", "No TK in InitiatorCAR as target", c);

}

343

break;

Listing F.11: Executor role check (see eq. E.8)

F.2 Action Metamodel

Figure F.1: ARS Test path

F.2.1 Validation Code

ActionRuleType ar01 = new ActionRuleType()

{

Id = Guid.NewGuid(),

Name = "test",

Event = ep01,

Assess = as01,

Response = rs01

};

m.ActionRuleTypes.Add(ar01);

Listing F.12: Action Rule Code Specification

EventPartType ep01 = new EventPartType()

{

Agendum = ag01

};

Listing F.13: Action Rule Code Even Part

AssessType as01 = new AssessType() { };

Listing F.14: Action Rule Code Assess Part

IfType rs01 = new IfType()

{

344

Then = new List<BlockType>() { new BlockType() { Action = new

ActionType() { TransactionProcessStepKind = tpsk02ac.Id } } }

};

Listing F.15: Action Rule Code Response Part

ActionType ag01 = new ActionType()

{

TransactionProcessStepKind = tpsk02rq.Id,

With = wh00

};

Listing F.16: Action Rule Code Agendum Clause

List<BlockType> wh00 = new List<BlockType>()

{

new BlockType(){ AttributeProperty= new FmReferenceType(){ Entity =

et01.Id, Attribute = at0101.Id } },

new BlockType(){ AttributeProperty= new FmReferenceType(){ Entity =

et01.Id, Attribute = at0102.Id } },

new BlockType(){ AttributeProperty= new FmReferenceType(){ Entity =

et01.Id, Connection = cn08.Id } }

};

Listing F.17: Action Rule Code When/With Clause

F.2.2 Model Convert

Dictionary<string, string> Transactions = m.TransactionKinds.Select(p =>

new { Key = p.Identification, Value = p.Id.ToString() }).ToDictionary(

x => x.Key, x => x.Value);

Listing F.18: Model convert CM

Dictionary<string, string> TransactionSteps = new Dictionary<string,

string>();

foreach (TransactionProcessStepKind tpsk in m.TransactionProcessStepKinds

)

{

TransactionKind tk = m.TransactionKinds.Find(x => x.Id == tpsk.

transactionKind);

string abbr = ModelStructure.Constants.Element.TPSK.

TransactionStateAbbreviations.Find(x => x.Item1 == tpsk.state).Item2

;

TransactionSteps.Add(tk.Identification + "/" + abbr, tpsk.Id.ToString()

);

}

345

Listing F.19: Model convert PM

Dictionary<string, string> Entities = m.EntityTypes.Select(p => new { Key

= p.Identification, Value = p.Id.ToString() }).ToDictionary(x => x.

Key, x => x.Value);

Dictionary<string, string> Attributes = new Dictionary<string, string>();

foreach (AttributeType at in m.AttributeTypes)

{

EntityType et = m.EntityTypes.Find(x => x.Id == at.EntityType);

Attributes.Add(et.Identification + "/" + at.Identification, at.Id.

ToString());

}

Dictionary<string, string> Connections = new Dictionary<string, string>()

;

foreach (Connector cn in m.Connections)

{

if (cn.ConnectorType == Connector.CT.ReferenceET)

{

EntityType et = m.EntityTypes.Find(x => x.Id == cn.Source);

Connections.Add(et.Identification + "/" + cn.Name, cn.Id.ToString());

}

}

Listing F.20: Model convert FM

F.2.3 Model to Specification

public static StringBuilder action_rule_specification(MSM.ActionRuleType ar

)

{

StringBuilder sb = new StringBuilder();

sb.Append(Keyword(keywords.RuleKeyword));

sb.Append(" ");

sb.Append(ar.Name);

sb.Append("\r\n");

indent += 2;

sb.Append(event_part(ar.Event));

sb.Append(assess_part(ar.Assess));

sb.Append(response_part(ar.Event, ar.Response));

indent -= 2;

return sb;

}

Listing F.21: Action Rule Creation Specification

346

static private StringBuilder event_part(MSM.EventPartType ev)

{

StringBuilder sb = new StringBuilder();

sb.Append(agendum_clause(ev.Agendum));

if (null != ev.While)

sb.Append(while_clause(ev.While));

return sb;

}

Listing F.22: Action Rule Creation Even Part

private static StringBuilder assess_part(MSM.AssessType bt)

{

StringBuilder sb = new StringBuilder();

if (null != bt && (null != bt.Justice || null != bt.Sincerity || null !=

bt.Truth))

{

sb.Append("".PadLeft(indent));

sb.Append(Keyword(keywords.AccessKeyword));

sb.Append("\r\n");

indent += 2;

//sb.Append(justice_sub_part());

//sb.Append(sincerity_sub_part());

//truth_sub_part();

indent -= 2;

}

return sb;

}

private static StringBuilder justice_sub_part(List<MSM.FmReferenceType> rts

)

{

StringBuilder sb = new StringBuilder();

sb.Append("".PadLeft(indent));

sb.Append(Keyword(keywords.JusticeKeyword));

sb.Append(":");

sb.Append("\r\n");

indent += 2;

foreach (MSM.FmReferenceType rt in rts)

{

sb.Append(fact_kind_formulation(rt));

}

indent -= 2;

return sb;

}

347

private static StringBuilder sincerity_sub_part(List<MSM.FmReferenceType>

rts)

{

StringBuilder sb = new StringBuilder();

sb.Append(Keyword(keywords.SincirityKeyword));

sb.Append(":");

sb.Append("\r\n");

indent += 2;

foreach (MSM.FmReferenceType rt in rts)

{

sb.Append(fact_kind_formulation(rt));

}

indent -= 2;

return sb;

}

private static StringBuilder truth_sub_part(List<MSM.FmReferenceType> rts)

{

StringBuilder sb = new StringBuilder();

sb.Append(Keyword(keywords.TruthKeyword));

sb.Append(":");

sb.Append("\r\n");

indent += 2;

sb.Append(foreach_clause(null));

sb.Append("{");

foreach (MSM.FmReferenceType rt in rts)

{

sb.Append(fact_kind_formulation(rt));

}

sb.Append("}");

foreach (MSM.FmReferenceType rt in rts)

{

sb.Append(fact_kind_formulation(rt));

}

indent -= 2;

return sb;

}

Listing F.23: Action Rule Creation Assess Part

static private StringBuilder response_part(MSM.EventPartType ev, MSM.IfType

it)

{

StringBuilder sb = new StringBuilder();

MSM.TransactionProcessStepKind tpsk = _m.TransactionProcessStepKinds.Find

(x => x.Id == ev.Agendum.TransactionProcessStepKind);

sb.Append("".PadLeft(indent));

348

sb.Append(Keyword(keywords.IfKeyword));

sb.Append(" ");

sb.Append(Keyword(keywords.ComplyingKeyword));

sb.Append(" ");

sb.Append(Keyword(keywords.WithKeyword));

sb.Append(" ");

sb.Append(present_tense_intention(tpsk.state));

sb.Append(" ");

sb.Append(Keyword(keywords.IsKeyword));

sb.Append(" ");

sb.Append(Keyword(keywords.ConsideredKeyword));

sb.Append(" ");

sb.Append(Keyword(keywords.JustifiableKeyword));

sb.Append("\r\n");

sb.Append("".PadLeft(indent));

sb.Append(Keyword(keywords.ThenKeyword));

sb.Append("\r\n");

indent += 2;

foreach (MSM.BlockType bt in it.Then)

{

if (null != bt.Flow && null != bt.Flow.Foreach)

{

sb.Append("".PadLeft(indent));

sb.Append(foreach_clause(bt.Flow.Foreach));

sb.Append("{");

foreach (MSM.BlockType bt2 in bt.Flow.Foreach.Repeating)

{

sb.Append(action_clause(bt2));

}

sb.Append("}");

}

else

{

sb.Append(action_clause(bt));

}

}

if (null != it.Else && it.Else.Count > 0)

{

sb.Append(Keyword(keywords.ElseKeyword));

foreach (MSM.BlockType bt in it.Else)

{

sb.Append(action_clause(bt));

}

}

indent -= 2;

return sb;

}

349

static private StringBuilder action_clause(MSM.BlockType bt)

{

StringBuilder sb = new StringBuilder();

MSM.TransactionProcessStepKind tpsk = _m.TransactionProcessStepKinds.Find

(x => x.Id == bt.Action.TransactionProcessStepKind);

MSM.TransactionKind tk = _m.TransactionKinds.Find(x => x.Id == tpsk.

transactionKind);

Guid etId = _m.Connections.Find(x => x.ConnectorType == MSM.Connector.CT.

ConcernsETTK && x.Target == tk.Id).Source;

string etName = _m.EntityTypes.Find(x => x.Id == etId).Identification;

sb.Append("".PadLeft(indent));

sb.Append(present_tense_intention(tpsk.state));

sb.Append(" ");

sb.Append(transaction_reference(tk.Name, etName));

sb.Append(" ");

sb.Append(transaction_step_reference(tk, tpsk));

sb.Append(with_clause(bt.Action.With));

return sb;

}

Listing F.24: Action Rule Creation Response Part

private static StringBuilder agendum_clause(ModelStructure.ActionType ag)

{

StringBuilder sb = new StringBuilder();

sb.Append("".PadLeft(indent));

sb.Append(Keyword(keywords.WhenKeyword));

sb.Append(" ");

MSM.TransactionProcessStepKind tpsk = _m.TransactionProcessStepKinds.Find

(x => x.Id == ag.TransactionProcessStepKind);

MSM.TransactionKind tk = _m.TransactionKinds.Find(x => x.Id == tpsk.

transactionKind);

Guid etId = _m.Connections.Find(x => x.ConnectorType == MSM.Connector.CT.

ConcernsETTK && x.Target == tk.Id).Source;

string etName = _m.EntityTypes.Find(x => x.Id == etId).Identification;

sb.Append(transaction_reference(tk.Name, etName));

sb.Append(" ");

sb.Append(Keyword(keywords.IsKeyword));

sb.Append(" ");

sb.Append(perfect_tense_intention(tpsk.state));

sb.Append(" ");

350

sb.Append(transaction_step_reference(tk, tpsk));

sb.Append("\r\n");

sb.Append(with_clause(ag.With));

return sb;

}

Listing F.25: Action Rule Creation Agendum Clause

private static StringBuilder with_clause(List<MSM.BlockType> bts)

{

StringBuilder sb = new StringBuilder();

if (null != bts && bts.Count > 0)

{

sb.Append("".PadLeft(indent));

sb.Append(Keyword(keywords.WithKeyword));

sb.Append("\r\n");

indent += 2;

foreach (MSM.BlockType bt in bts)

{

sb.Append("".PadLeft(indent));

sb.Append(property_kind_formulation(bt.AttributeProperty));

sb.Append("\r\n");

}

indent -= 2;

}

return sb;

}

private static StringBuilder property_kind_formulation(MSM.FmReferenceType

rt)

{

StringBuilder sb = new StringBuilder();

MSM.AttributeType at = _m.AttributeTypes.Find(x => x.Id == rt.Attribute);

MSM.EntityType et = _m.EntityTypes.Find(x => x.Id == rt.Entity);

MSM.Connector cn = _m.Connections.Find(x => x.ConnectorType == MSM.

Connector.CT.ReferenceET && x.Id == rt.Connection);

MSM.EntityType cnet = _m.EntityTypes.Find(x => x.Id == cn?.Source);

string atName = "";

string etName = "";

string atType = "";

if (rt.Connection == new Guid())

{

atName = at.Identification;

etName = et.Identification;

atType = at.TypeName;

}

else

351

{

atName = cn.Name;

etName = cnet.Identification; ;

atType = et.Identification;

}

sb.Append(property_variable(atName, etName, ""));

sb.Append(Keyword(keywords.IsKeyword));

sb.Append(" ");

int q = 1;

switch (q)

{

case 1:

// If the attribute is a relation, some is needed

if (rt.Connection != new Guid())

{

sb.Append(Keyword(keywords.SomeKeyword));

sb.Append(" ");

}

sb.Append(bracketed_name(atType));

break;

case 2:

property_variable(at.Identification, et.Identification, "");

break;

case 3:

sb.Append(Keyword(keywords.SetKeyword));

sb.Append(" ");

sb.Append(Keyword(keywords.OfKeyword));

sb.Append(" ");

bracketed_name("");

sb.Append("\r\n");

sb.Append("{");

List<MSM.BlockType> rts = new List<MSM.BlockType>();

with_clause(rts);

sb.Append("}");

break;

}

sb.Append(";");

return sb;

}

Listing F.26: Action Rule Creation With Clause

static private StringBuilder foreach_clause(MSM.ForeachType fet)

{

StringBuilder sb = new StringBuilder();

sb.Append("".PadLeft(indent));

352

sb.Append(Keyword(keywords.ForKeyword));

sb.Append(" ");

sb.Append(Keyword(keywords.EachKeyword));

sb.Append(" ");

bracketed_name(fet.Element);

sb.Append(" ");

sb.Append(Keyword(keywords.InKeyword));

sb.Append(" ");

sb.Append("{");

property_variable("", "", "");

sb.Append("}");

return sb;

}

Listing F.27: Action Rule Creation For Each Clause

private static StringBuilder while_clause(ModelStructure.BlockType bl)

{

StringBuilder sb = new StringBuilder();

sb.Append("".PadLeft(indent));

sb.Append(Keyword(keywords.WhileKeyword));

foreach_clause(null);

sb.Append("{");

while_subclause();

sb.Append("}");

while_subclause();

return sb;

}

private static StringBuilder while_subclause()

{

StringBuilder sb = new StringBuilder();

transaction_reference(null, null);

sb.Append(Keyword(keywords.IsKeyword));

perfect_tense_intention(0);

transaction_step_reference(null, null);

with_clause(null);

return sb;

}

private static StringBuilder transaction_step_reference(MSM.TransactionKind

tk, MSM.TransactionProcessStepKind tpsk)

{

StringBuilder sb = new StringBuilder();

sb.Append("(");

sb.Append(tk.Identification);

sb.Append("/");

sb.Append(intention_abbreviation(tpsk.state));

353

sb.Append(")");

return sb;

}

private static StringBuilder transaction_reference(string tkName, string

etName)

{

StringBuilder sb = new StringBuilder();

sb.Append(bracketed_name(tkName));

sb.Append(" ");

sb.Append(Keyword(keywords.ForKeyword));

sb.Append(" ");

sb.Append(Keyword(keywords.NewKeyword));

sb.Append(" ");

sb.Append(bracketed_name(etName));

return sb;

}

Listing F.28: Action Rule Creation While Clause

private static StringBuilder property_variable(string atName, string etName

, string period)

{

StringBuilder sb = new StringBuilder();

sb.Append(Keyword(keywords.TheKeyword));

sb.Append(" ");

sb.Append(bracketed_name(atName));

sb.Append(" ");

sb.Append(Keyword(keywords.OfKeyword));

sb.Append(" ");

sb.Append(bracketed_name(etName));

sb.Append(" ");

if (!string.IsNullOrEmpty(period))

{

sb.Append(Keyword(keywords.InKeyword));

sb.Append(" ");

sb.Append(bracketed_name(period));

}

return sb;

}

Listing F.29: Action Rule Creation Property Variable

private static StringBuilder fact_kind_formulation(MSM.FmReferenceType rt)

{

StringBuilder sb = new StringBuilder();

if (sb == null) // checkout proper if

{

354

sb.Append(property_kind_formulation(rt));

}

else

{

sb.Append(attribute_kind_formulation());

}

return sb;

}

Listing F.30: Action Rule Creation Fact Kind

private static StringBuilder attribute_kind_formulation()

{

StringBuilder sb = new StringBuilder();

property_variable("", "", "");

sb.Append(Keyword(keywords.IsKeyword));

comparison();

value_variable();

sb.Append(";");

return sb;

}

private static StringBuilder comparison()

{

StringBuilder sb = new StringBuilder();

operators();

sb.Append(Keyword(keywords.CompareOrKeyword));

comparison();

operators();

sb.Append(Keyword(keywords.CompareAndKeyword));

comparison();

operators();

return sb;

}

private static StringBuilder operators()

{

StringBuilder sb = new StringBuilder();

sb.Append(Keyword(keywords.CompareEqualKeyword));

sb.Append(Keyword(keywords.CompareToKeyword));

sb.Append(Keyword(keywords.CompareGreaterKeyword));

sb.Append(Keyword(keywords.CompareThanKeyword));

sb.Append(Keyword(keywords.CompareLessKeyword));

sb.Append(Keyword(keywords.CompareThanKeyword));

sb.Append(Keyword(keywords.InKeyword));

355

return sb;

}

private static StringBuilder value_variable()

{

StringBuilder sb = new StringBuilder();

property_variable("", "", "");

value();

;

return sb;

}

private static StringBuilder value()

{

StringBuilder sb = new StringBuilder();

dimension("");

sb.Append(":");

//Real()

// Integer

unit("");

boolean(false);

return sb;

}

private static StringBuilder dimension(string name)

{

StringBuilder sb = new StringBuilder();

sb.Append(name);

return sb;

}

private static StringBuilder boolean(bool b)

{

StringBuilder sb = new StringBuilder();

if (b)

sb.Append(Keyword(keywords.TrueKeyword));

else

sb.Append(Keyword(keywords.FalseKeyword));

return sb;

}

private static StringBuilder unit(string name)

{

StringBuilder sb = new StringBuilder();

sb.Append(name);

return sb;

356

}

Listing F.31: Action Rule Creation Attribute Kind

private static string present_tense_intention(ModelStructure.Constants.

Element.TPSK.TransactionStates st)

{

return st.ToString().ToLower();

}

private static string intention_abbreviation(ModelStructure.Constants.

Element.TPSK.TransactionStates st)

{

return ModelStructure.Constants.Element.TPSK.

TransactionStateAbbreviations.Find(x => x.Item1 == st).Item2;

}

private static string perfect_tense_intention(ModelStructure.Constants.

Element.TPSK.TransactionStates st)

{

return ModelStructure.Constants.Element.TPSK.TransactionStatePerfectTense

.Find(x => x.Item1 == st).Item2.ToLower();

}

Listing F.32: Action Rule Creation Intentions

public static StringBuilder stringed_name(string name)

{

StringBuilder sb = new StringBuilder();

sb.Append(Keyword(keywords.DoubleQuote));

sb.Append(name);

sb.Append(Keyword(keywords.DoubleQuote));

return sb;

}

public static StringBuilder bracketed_name(string name)

{

StringBuilder sb = new StringBuilder();

sb.Append(Keyword(keywords.BracketPre));

sb.Append(name);

sb.Append(Keyword(keywords.BracketPost));

return sb;

}

enum keywords

{

SomeKeyword,

RuleKeyword,

357

WhenKeyword,

WhileKeyword,

WithKeyword,

IsKeyword,

ForKeyword,

EachKeyword,

NewKeyword,

OfKeyword,

InKeyword,

OnKeyword,

TheKeyword,

IfKeyword,

ElseKeyword,

ThenKeyword,

SetKeyword,

RequestKeyword,

PromiseKeyword,

StateKeyword,

AcceptKeyword,

DeclineKeyword,

QuitKeyword,

RejectKeyword,

StopKeyword,

RevokeKeyword,

AllowKeyword,

RefuseKeyword,

ExecuteKeyword,

RequestedKeyword,

PromisedKeyword,

StatedKeyword,

AcceptedKeyword,

DeclinedKeyword,

QuittedKeyword,

RejectedKeyword,

StoppedKeyword,

RevokedKeyword,

AllowedKeyword,

RefusedKeyword,

ExecutedKeyword,

RequestAbKeyword,

PromiseAbKeyword,

StateAbKeyword,

AcceptAbKeyword,

DeclineAbKeyword,

358

QuitAbKeyword,

RejectAbKeyword,

StopAbKeyword,

RevokeAbKeyword,

AllowAbKeyword,

RefuseAbKeyword,

ExecuteAbKeyword,

TrueKeyword,

FalseKeyword,

AccessKeyword,

JusticeKeyword,

SincirityKeyword,

TruthKeyword,

CompareEqualKeyword,

CompareGreaterKeyword,

CompareLessKeyword,

CompareThanKeyword,

CompareToKeyword,

CompareOrKeyword,

CompareAndKeyword,

DoubleQuote,

BracketPre,

BracketPost,

LineEndKeyword,

ComplyingKeyword,

ConsideredKeyword,

JustifiableKeyword

}

static string Keyword(keywords kw)

{

string word = "";

switch (kw)

{

case keywords.SomeKeyword: word = "some"; break;

case keywords.RuleKeyword: word = "rule"; break;

case keywords.WhenKeyword: word = "when"; break;

case keywords.WhileKeyword: word = "while"; break;

case keywords.WithKeyword: word = "with"; break;

case keywords.IsKeyword: word = "is"; break;

case keywords.ForKeyword: word = "for"; break;

case keywords.EachKeyword: word = "each"; break;

359

case keywords.NewKeyword: word = "new"; break;

case keywords.OfKeyword: word = "of"; break;

case keywords.InKeyword: word = "in"; break;

case keywords.OnKeyword: word = "on"; break;

case keywords.TheKeyword: word = "the"; break;

case keywords.IfKeyword: word = "if"; break;

case keywords.ElseKeyword: word = "else"; break;

case keywords.ThenKeyword: word = "then"; break;

case keywords.SetKeyword: word = "set"; break;

case keywords.RequestKeyword: word = "request"; break;

case keywords.PromiseKeyword: word = "promise"; break;

case keywords.StateKeyword: word = "state"; break;

case keywords.AcceptKeyword: word = "accept"; break;

case keywords.DeclineKeyword: word = "decline"; break;

case keywords.QuitKeyword: word = "quit"; break;

case keywords.RejectKeyword: word = "reject"; break;

case keywords.StopKeyword: word = "stop"; break;

case keywords.RevokeKeyword: word = "revoke"; break;

case keywords.AllowKeyword: word = "allow"; break;

case keywords.RefuseKeyword: word = "refuse"; break;

case keywords.ExecuteKeyword: word = "execute"; break;

case keywords.RequestedKeyword: word = "requested"; break;

case keywords.PromisedKeyword: word = "promised"; break;

case keywords.StatedKeyword: word = "stated"; break;

case keywords.AcceptedKeyword: word = "accepted"; break;

case keywords.DeclinedKeyword: word = "declined"; break;

case keywords.QuittedKeyword: word = "quitted"; break;

case keywords.RejectedKeyword: word = "rejected"; break;

case keywords.StoppedKeyword: word = "stopped"; break;

case keywords.RevokedKeyword: word = "revoked"; break;

case keywords.AllowedKeyword: word = "allowed"; break;

case keywords.RefusedKeyword: word = "refused"; break;

case keywords.ExecutedKeyword: word = "executed"; break;

case keywords.RequestAbKeyword: word = "rq"; break;

case keywords.PromiseAbKeyword: word = "pm"; break;

case keywords.StateAbKeyword: word = "st"; break;

case keywords.AcceptAbKeyword: word = "ac"; break;

case keywords.DeclineAbKeyword: word = "dc"; break;

case keywords.QuitAbKeyword: word = "qt"; break;

case keywords.RejectAbKeyword: word = "rj"; break;

case keywords.StopAbKeyword: word = "sp"; break;

case keywords.RevokeAbKeyword: word = "rv"; break;

case keywords.AllowAbKeyword: word = "al"; break;

case keywords.RefuseAbKeyword: word = "rf"; break;

360

case keywords.ExecuteAbKeyword: word = "ex"; break;

case keywords.TrueKeyword: word = "true"; break;

case keywords.FalseKeyword: word = "false"; break;

case keywords.AccessKeyword: word = "assess"; break;

case keywords.JusticeKeyword: word = "justice"; break;

case keywords.SincirityKeyword: word = "sincerity"; break;

case keywords.TruthKeyword: word = "truth"; break;

case keywords.CompareEqualKeyword: word = "equal"; break;

case keywords.CompareGreaterKeyword: word = "greater"; break;

case keywords.CompareLessKeyword: word = "less"; break;

case keywords.CompareThanKeyword: word = "than"; break;

case keywords.CompareToKeyword: word = "to"; break;

case keywords.CompareOrKeyword: word = "or"; break;

case keywords.CompareAndKeyword: word = "and"; break;

case keywords.DoubleQuote: word = "\""; break;

 case keywords.BracketPre: word = "["; break;

 case keywords.BracketPost: word = "]"; break;

 case keywords.LineEndKeyword: word = ";"; break;

 case keywords.ComplyingKeyword: word = "complying"; break;

 case keywords.ConsideredKeyword: word = "considered"; break;

 case keywords.JustifiableKeyword: word = "justifiable"; break;

 }

 return word;

 }

Listing F.33: Action Rule Creation Variables

Figure F.2: ARS Test Grammar Out

361

F.2.4 Grammar to XML

Figure F.3: ARS Test Grammar In

public override void EnterAction_rule_specification([NotNull]

AMgrammarPropParser.Action_rule_specificationContext context)

{

m = new AMParser.XML.DEMOmodel() { Name = "AM" };

m.ActionRuleTypes = new AMParser.XML.ActionRuleType[1];

m.ActionRuleTypes[0] = new AMParser.XML.ActionRuleType()

{

Id = Guid.NewGuid().ToString(),

Name = ((AMgrammarPropParser.Bracketed_nameContext)context.children[1]).

Start.Text

};

}

Listing F.34: Action Rule to XML Specification

public override void EnterAgendum_clause([NotNull] AMgrammarPropParser.

Agendum_clauseContext context)

{

string intention = context.transaction_step_reference().

intention_abbreviation().Start.Text;

string tk = context.transaction_step_reference().transaction_kind_id().

Start.Text;

string tpskId = TransactionSteps[tk + "/" + intention];

m.ActionRuleTypes[0].Event = new AMParser.XML.EventPartType()

{

Agendum = new AMParser.XML.ActionType()

{

TransactionProcessStepKind = tpskId

}

};

if (context.with_clause().Length > 0)

{

int withCount = context.with_clause()[0].ChildCount;

if (withCount > 0)

362

{

m.ActionRuleTypes[0].Event.Agendum.With = new AMParser.XML.BlockType[

withCount - 1];

for (int i = 0; i < withCount - 1; i++)

{

m.ActionRuleTypes[0].Event.Agendum.With[i] = new AMParser.XML.

BlockType() { };

}

}

}

}

Listing F.35: Action Rule to XML Agendum Clause

public override void EnterProperty_kind_formulation([NotNull]

AMgrammarPropParser.Property_kind_formulationContext context)

{

AMgrammarPropParser.Agendum_clauseContext ag = context.Parent.Parent as

AMgrammarPropParser.Agendum_clauseContext;

AMgrammarPropParser.With_clauseContext wt = context.Parent as

AMgrammarPropParser.With_clauseContext;

if (ag != null)

{

string att = ((AMgrammarPropParser.NameContext)context.property_variable

()[0].bracketed_name()[0].children[1]).Start.Text;

string ent = ((AMgrammarPropParser.NameContext)context.property_variable

()[0].bracketed_name()[1].children[1]).Start.Text;

string attId = null;

string entId = Entities[ent];

string conId = null;

int i = 0;

for (int j = 1; j < wt.children.Count; j++)

{

if (wt.children[j] == context)

{

i = j - 1;

break;

}

}

if (context.children[2].ToString() == "some") // Connection

{

conId = Connections[ent + "/" + att];

}

else

{

attId = Attributes[ent + "/" + att];

}

363

m.ActionRuleTypes[0].Event.Agendum.With[i].Item = new FmReferenceType()

{

Attribute = attId,

Entity = entId,

Connection = conId

};

}

}

Listing F.36: Action Rule to XML With Clause

Figure F.4: ARS Test XML Out

F.2.5 Model to XML

public static ActionRuleType ConvertToXML(MSM.ActionRuleType ART)

{

return new ActionRuleType

{

Id = ART?.Id.ToString(),

Name = ART?.Name,

Event = ConvertToXML(ART?.Event),

Assess = ConvertToXML(ART?.Assess),

Response = ConvertToXML(ART?.Response)

};

}

Listing F.37: Action Rule Model to XML Specification

364

public static EventPartType ConvertToXML(MSM.EventPartType ET)

{

return new EventPartType

{

Agendum = ConvertToXML(ET?.Agendum),

While = (ET?.While != null) ? ConvertToXML(ET?.While) : null

};

}

Listing F.38: Action Rule Model to XML Even Part

public static AssessPartType ConvertToXML(MSM.AssessType AT)

{

return new AssessPartType

{

Justice = (AT?.Justice?.Count > 0) ? AT?.Justice?.Select(x =>

ConvertToXML(x)).ToArray() : null,

Sincerity = (AT?.Sincerity?.Count > 0) ? AT?.Sincerity?.Select(x =>

ConvertToXML(x)).ToArray() : null,

Truth = ConvertToXML(AT?.Truth)

};

}

Listing F.39: Action Rule Model to XML Assess Part

public static ForeachType ConvertToXML(MSM.ForeachType FET)

{

return new ForeachType

{

Element = FET?.Element,

Collection = FET?.Collection.ToString(),

Repeating = (FET?.Repeating.Count > 0) ? FET?.Repeating.Select(x =>

ConvertToXML(x)).ToArray() : null

};

}

Listing F.40: Action Rule Model to XML For Each Clause

365

Figure F.5: ARS Test XML DEMO

366

Appendix G

SEA implementation Metamodel

We did the implementation of the MDG in SEA with this browser tree of fig. G.1. The
leafs represent the profile, diagrams and toolbox.

Figure G.1: SEA browser tree

Figure G.2: SEA browser aspect tree

367

Figure G.3: SEA browser diagram tree

Figure G.4: SEA browser diagram tree

368

G.1 Profile

Figure G.5: SEA CM profile

369

Figure G.6: SEA PM profile

370

Figure G.7: SEA FM profile

371

Figure G.8: SEA AM profile

372

G.2 Toolbox

Figure G.9: SEA ACD Toolbox

373

Figure G.10: SEA AFD Toolbox

374

Figure G.11: SEA ARS Toolbox

375

Figure G.12: SEA OCD Toolbox

376

Figure G.13: SEA OFD Toolbox

377

Figure G.14: SEA PSD Toolbox

378

Figure G.15: SEA SEC Toolbox

379

Figure G.16: SEA TPD Toolbox

Figure G.17: SEA WIS Toolbox

380

G.3 Diagrams

Figure G.18: SEA CM diagrams

Figure G.19: SEA PM diagrams

Figure G.20: SEA FM diagrams

381

Figure G.21: SEA AM diagrams

G.4 Shapes

Figure G.22: DEMOSL CM OCD visualisation

Figure G.23: DEMOSL PSD visualisation proposal

G.5 ShapeScipts

Shapescripts of the whole tool solution have been listed here. The ordering is by usage
for standard DEMO and extra functionality.

382

G.5.1 Elements

// ShapeScript StereoType: DEMO_TRANSACTION_KIND

shape main

{

layoutType = "leftright";

DefSize(50,50);

if (hasproperty("diagram.mdgtype", "DEMO::DEMO_OCD"))

{

AddSubShape("OCDTransactionKind", 100, 100, 0, 0);

}

else if (hasproperty("diagram.mdgtype", "DEMO::DEMO_PSD"))

{

AddSubShape("PSDTransactionKind", 100, 100, 0, 0);

}

else if (hasproperty("diagram.mdgtype", "DEMO::DEMO_OFD"))

{

AddSubShape("OFDTransactionKind", 100, 100, 0, 0);

}

else if (hasproperty("diagram.mdgtype", "DEMO::DEMO_TPD"))

{

AddSubShape("TPDTransactionKind", 100, 100, 0, 0);

}

else if (hasproperty("diagram.mdgtype", "DEMO::DEMO_SRD"))

{

AddSubShape("SRDTransactionKind", 100, 100, 0, 0);

}

else if (hasproperty("diagram.mdgtype", "ArchiMate3::Business"))

{

AddSubShape("FNCTransactionKind", 100, 100, 0, 0);

}

else {

AddSubShape("OCDTransactionKind", 100, 100, 0, 0);

//print("#diagram.mdgtype#");

}

shape FNCTransactionKind

{

h_align = "center";

v_align = "center";

editablefield = "name";

fixedAspectRatio = "true";

DefSize(100,50);

setpenwidth(2);

if (HasTag("transaction sort", "original"))

383

{

SetPenColor(255, 0, 0);

}

else if (HasTag("transaction sort", "informational"))

{

SetPenColor(0, 255, 0);

}

else if (HasTag("transaction sort", "documental"))

{

SetPenColor(0, 0, 255);

}

else if (HasTag("transaction sort", "fysical"))

{

SetPenColor(128, 128, 128);

}

StartPath();

moveto(0,0);

lineto(75,0);

lineto(75,-25);

lineto(100,50);

lineto(75,125);

lineto(75,100);

lineto(0,100);

lineto(0,0);

EndPath();

setfillcolor(255,255,192);

FillAndStrokePath();

print("#tag:Operation Name#");

}

shape OFDTransactionKind

{

h_align = "center";

v_align = "center";

editablefield = "name";

fixedAspectRatio = "true";

setpenwidth(2);

//SetFillColor(255, 255, 255);

//roundrect(0, 0, 100, 100, 30, 30);

//SetPenColor(0, 0, 0);

if (HasTag("transaction sort", "original"))

{

SetPenColor(255, 0, 0);

}

else if (HasTag("transaction sort", "informational"))

{

SetPenColor(0, 255, 0);

384

}

else if (HasTag("transaction sort", "documental"))

{

SetPenColor(0, 0, 255);

}

else if (HasTag("transaction sort", "fysical"))

{

SetPenColor(128, 128, 128);

}

polygon(50, 50, 4, 50, 0);

print("#tag:Product Kind#");

}

shape SRDTransactionKind

{

h_align = "center";

v_align = "center";

editablefield = "name";

fixedAspectRatio = "true";

setpenwidth(2);

SetFillColor(127, 127, 127);

SetPenColor(0, 0, 0);

polygon(50, 50, 4, 71, 45);

SetFillColor(191, 191, 191);

polygon(50, 50, 4, 50, 0);

print("#tag:Product Kind#");

}

shape OCDTransactionKind

{

h_align = "center";

v_align = "center";

editablefield = "name";

fixedAspectRatio = "true";

setpenwidth(2);

SetFillColor(255, 255, 255);

if (HasTag("ECF Missing", "true"))

{

setlinestyle("dash");

}

SetPenColor(0, 0, 0);

Ellipse(0, 0, 100, 100);

setlinestyle("solid");

if (HasTag("transaction sort", "original"))

385

{

SetPenColor(255, 0, 0);

}

else if (HasTag("transaction sort", "informational"))

{

SetPenColor(0, 255, 0);

}

else if (HasTag("transaction sort", "documental"))

{

SetPenColor(0, 0, 255);

}

else if (HasTag("transaction sort", "fysical"))

{

SetPenColor(128, 128, 128);

}

polygon(50, 50, 4, 50, 0);

print("#name#");

}

shape PSDTransactionKind

{

defsize(200, 40);

setpenwidth(2);

roundrect(0, 0, 100, 100, 100, 100);

fillandstrokepath();

addsubshape("ex", 20, 100, 40, 0);

}

shape TPDTransactionKind

{

defsize(50, 50);

setpenwidth(2);

roundrect(0, 0, 100, 100, 100, 100);

fillandstrokepath();

addsubshape("ex", 20, 100, 40, 0);

}

shape ex

{

h_align = "center";

v_align = "center";

editablefield = "name";

setpenwidth(2);

println("#name#");

if (HasTag("transaction sort", "original"))

{

SetPenColor(255, 0, 0);

386

}

else if (HasTag("transaction sort", "informational"))

{

SetPenColor(0, 255, 0);

}

else if (HasTag("transaction sort", "documental"))

{

SetPenColor(0, 0, 255);

}

else if (HasTag("transaction sort", "fysical"))

{

SetPenColor(128, 128, 128);

}

polygon(50, 50, 4, 50, 0);

}

}

shape label

{

editablefield = "alias";

setpenwidth(2);

setorigin("s",0,0);

//print("#alias#");

if (hasproperty("diagram.mdgtype", "DEMO::DEMO_OCD"))

{

if (hasproperty("diagram.stereotype", "DEMO4n")) {

}

else if (hasproperty("diagram.stereotype", "DEMO4c")) {

}

else {

print("#alias#");

}

}

else if (hasproperty("diagram.mdgtype", "DEMO::DEMO_PSD"))

{

print("#alias#");

}

else if (hasproperty("diagram.mdgtype", "DEMO::DEMO_OFD"))

{

print("#tag:Product Kind Formulation#");

}

else if (hasproperty("diagram.mdgtype", "DEMO::DEMO_TPD"))

{

print("#alias#");

}

else if (hasproperty("diagram.mdgtype", "DEMO::DEMO_SRD"))

387

{

print("#alias#");

}

else if (hasproperty("diagram.mdgtype", "ArchiMate3::Business"))

{

print("#name#");

}

else {

print("#alias#");

}

}

Listing G.1: Transaction Kind shapescript

// ShapeScript StereoType: DEMO_AGGREGATE_TRANSACTION_KIND

shape main

{

h_align = "center";

v_align = "center";

editablefield = "name";

fixedAspectRatio = true;

DefSize(50,50);

setfillcolor(220,220,220);

setpenwidth(2);

ellipse(10,0,110,100);

ellipse(0,0,100,100);

if (hasproperty("diagram.stereotype", "DEMO4n")) {

if (HasTag("transaction sort", "original"))

{

SetPenColor(255, 0, 0);

}

else if (HasTag("transaction sort", "informational"))

{

SetPenColor(0, 255, 0);

}

else if (HasTag("transaction sort", "documental"))

{

SetPenColor(0, 0, 255);

}

else if (HasTag("transaction sort", "fysical"))

{

SetPenColor(128, 128, 128);

}

}

else if (hasproperty("diagram.stereotype", "DEMO4c")) {

388

if (HasTag("transaction sort", "original"))

{

SetPenColor(255, 0, 0);

}

else if (HasTag("transaction sort", "informational"))

{

SetPenColor(0, 255, 0);

}

else if (HasTag("transaction sort", "documental"))

{

SetPenColor(0, 0, 255);

}

else if (HasTag("transaction sort", "fysical"))

{

SetPenColor(128, 128, 128);

}

}

polygon(50,50,4,50,0);

print("#name#");

}

shape label{

editablefield = "alias";

setorigin("s",0,0);

print("#alias#");

}

Listing G.2: Aggregate Transaction Kind shapescript

// ShapeScript StereoType: DEMO_ELEMENTARY_ACTOR_ROLE

// setlinestyle(string linestyle) // solid, dash, dot, dashdot, dashdotdot

shape main{

DefSize(50,50);

if (hasproperty("diagram.mdgtype", "DEMO::DEMO_PSD")) {

AddSubShape("PSDSwimlane", 100, 100, 0, 0);

}

else {

AddSubShape("PSDNormal", 100, 100, 0, 0);

}

shape PSDSwimlane

{

h_align = "left";

389

v_align = "top";

editablefield = "name";

DefSize(30,200);

setpen(220,220,220,3);

moveto(0,100);

lineto(100,100);

if (hasproperty("diagram.stereotype", "DEMO4n")) {

}

else if (hasproperty("diagram.stereotype", "DEMO4c")) {

}

else {

print("#name#");

}

}

shape PSDNormal

{

h_align = "center";

v_align = "top";

editablefield = "name";

DefSize(50,50);

setpenwidth(2);

// ECF Missing // ECF 1, 10, 20

if (HasTag("ECF Missing", "true"))

{

setlinestyle("dash");

}

rectangle(0,0,100,100);

print("#name#");

}

}

shape label{

editablefield = "alias";

if (hasproperty("diagram.mdgtype", "DEMO::DEMO_PSD")) {

setorigin("w",0,0);

if (hasproperty("diagram.stereotype", "DEMO4n")) {

}

else if (hasproperty("diagram.stereotype", "DEMO4c")) {

}

else {

print("#alias#");

}

}

else {

if (hasproperty("diagram.stereotype", "DEMO4n")) {

setorigin("center", 0, 0);

}

390

else if (hasproperty("diagram.stereotype", "DEMO4c")) {

setorigin("center", 0, 0);

}

else {

setorigin("s", 0, 0);

}

print("#alias#");

}

}

//decoration ECFMissing // ECF 1, 10, 20

//{

// Not an decoration. Is the boundary.

//}

// arcto(int left,int top,int right,int bottom,int startingpointx,int

startingpointy,int endingpointx,int endingpointy)

decoration ECFUnclear // ECF 2, 11, 21

{

orientation = "N";

if (HasTag("ECF Unclear", "true"))

{

//centerbottom point

setfillcolor(255, 0, 0);

startpath();

arc(48, 96, 52, 100, 55, 98, 55, 98);

endpath();

fillpath();

// question mark in 3 sections

setpen(255, 0, 0, 2);

moveto(50, 90);

lineto(50, 70);

arcto(20, 10, 80, 70, 50, 70, 80, 40);

arcto(20, 10, 80, 70, 80, 40, 20, 40);

}

}

decoration NotResponsible // ECF 3, 12

{

orientation = "SW";

if (HasTag("ECF Not Responsible", "true"))

{

setpen(255, 0, 0, 1);

// circle

391

ellipse(0, 0, 100, 100);

// black V

setpen(0, 0, 0, 1);

moveto(20, 20);

lineto(50, 80);

lineto(80, 20);

}

else if (HasTag("ECF Not Authorised", "true"))

{

// black V

setpen(0, 0, 0, 1);

moveto(20, 20);

lineto(50, 80);

lineto(80, 20);

}

else if (HasTag("ECF Not Competent", "true"))

{

// black V

setpen(0, 0, 0, 1);

moveto(20, 20);

lineto(50, 80);

lineto(80, 20);

}

}

decoration NotQualified // ECF 4, 13

{

orientation = "S";

if (HasTag("ECF Not Authorised", "true"))

{

setpen(255, 0, 0, 1);

// circle

ellipse(0, 0, 100, 100);

// black B

setpen(0, 0, 0, 1);

moveto(35, 20);

lineto(35, 80);

lineto(50, 80);

arcto(30, 50, 70, 80, 50, 80, 70, 65);

arcto(30, 50, 70, 80, 70, 65, 50, 50);

arcto(30, 20, 70, 50, 50, 50, 70, 35);

arcto(30, 20, 70, 50, 70, 35, 50, 20);

lineto(35, 20);

moveto(35, 50);

lineto(50, 50);

}

392

else if (HasTag("ECF Not Responsible", "true"))

{

// black B

setpen(0, 0, 0, 1);

moveto(35, 20);

lineto(35, 80);

lineto(50, 80);

arcto(30, 50, 70, 80, 50, 80, 70, 65);

arcto(30, 50, 70, 80, 70, 65, 50, 50);

arcto(30, 20, 70, 50, 50, 50, 70, 35);

arcto(30, 20, 70, 50, 70, 35, 50, 20);

lineto(35, 20);

moveto(35, 50);

lineto(50, 50);

}

else if (HasTag("ECF Not Competent", "true"))

{

// black B

setpen(0, 0, 0, 1);

moveto(35, 20);

lineto(35, 80);

lineto(50, 80);

arcto(30, 50, 70, 80, 50, 80, 70, 65);

arcto(30, 50, 70, 80, 70, 65, 50, 50);

arcto(30, 20, 70, 50, 50, 50, 70, 35);

arcto(30, 20, 70, 50, 70, 35, 50, 20);

lineto(35, 20);

moveto(35, 50);

lineto(50, 50);

}

}

decoration NotCompentent // ECF 5, 14

{

orientation = "SE";

if (HasTag("ECF Not Competent", "true"))

{

setpen(255, 0, 0, 1);

// circle

ellipse(0, 0, 100, 100);

// black C

setpen(0, 0, 0, 1);

arc(30, 20, 70, 80, 70, 30, 70, 70);

}

else if (HasTag("ECF Not Responsible", "true"))

{

// black C

393

setpen(0, 0, 0, 1);

arc(30, 20, 70, 80, 70, 30, 70, 70);

}

else if (HasTag("ECF Not Authorised", "true"))

{

// black C

setpen(0, 0, 0, 1);

arc(30, 20, 70, 80, 70, 30, 70, 70);

}

}

//rectangle(int left, int top, int right, int bottom)

decoration Separated // ECF 6, 15

{

orientation = "NW";

if (HasTag("ECF Separated", "true"))

{

setfillcolor(255, 0, 0);

setlinestyle("dash");

rectangle(0, 0, 70, 70);

rectangle(30, 30, 100, 100);

}

if (HasTag("Self Initiating", "true"))

{

SetPenColor(0, 0, 0);

Ellipse(0, 0, 100, 100);

polygon(50, 50, 4, 50, 0);

}

}

decoration Scattered // ECF 7,16

{

orientation = "E";

if (HasTag("ECF Scattered", "true"))

{

setfillcolor(255, 0, 0);

rectangle(50, 0, 80, 20);

rectangle(50, 30, 80, 50);

rectangle(70, 80, 100, 100);

rectangle(0, 50, 30, 70);

rectangle(10, 80, 40, 100);

}

}

decoration Duplicated // ECF 8, 17, 23

{

orientation = "NE";

394

if (HasTag("ECF Duplicated", "true"))

{

setfillcolor(255, 0, 0);

rectangle(0, 30, 70, 100);

rectangle(30, 0, 100, 70);

fillpath();

}

}

decoration MissingStep // ECF 9, 24, 25

{

orientation = "W";

if (HasTag("ECF Missing Step", "true"))

{

setfillcolor(255, 0, 0);

rectangle(0, 0, 70, 70);

fillpath();

setfillcolor(255, 255, 0);

setlinestyle("dash");

rectangle(30, 30, 100, 100);

}

}

decoration MissingInformation // ECF 26, 18, 22

{

}

decoration UnwantedSelfInitiation // ECF 19

{

}

Listing G.3: Elementary Actor Role shapescript

// ShapeScript StereoType: DEMO_COMPOSITE_ACTOR_ROLE

shape main{

DefSize(50,50);

if (hasproperty("diagram.mdgtype", "DEMO::DEMO_PSD")) {

AddSubShape("PSDSwimlane", 100, 100, 0, 0);

}

else {

AddSubShape("CARNormal", 100, 100, 0, 0);

}

shape PSDSwimlane

395

{

h_align = "left";

v_align = "top";

editablefield = "name";

DefSize(30,200);

setpen(220, 220, 220, 3);

moveto(0,100);

lineto(100,100);

if (hasproperty("diagram.stereotype", "DEMO4n")) {

}

else if (hasproperty("diagram.stereotype", "DEMO4c")) {

}

else {

print("#name#");

}

}

shape CARNormal

{

h_align = "center";

v_align = "top";

editablefield = "name";

DefSize(50,50);

setpenwidth(2);

// ECF Missing // ECF 1, 10, 20

if (HasTag("ECF Missing", "true"))

{

setlinestyle("dash");

}

if (HasProperty(’rectanglenotation’, ’0’))

{

setfillcolor(220, 220, 220);

rectangle(0, 0, 100, 100);

// code for iconic representation

}

else

{

setpen(220, 220, 220, 5);

rectangle(0, 0, 100, 100);

// code for rectangular representation

// e.g. Rectangle or DrawNativeShape

}

rectangle(0,0,100,100);

print("#name#");

}

}

shape label{

396

editablefield = "alias";

if (hasproperty("diagram.mdgtype", "DEMO::DEMO_PSD")) {

setorigin("w",0,0);

if (hasproperty("diagram.stereotype", "DEMO4n")) {

}

else if (hasproperty("diagram.stereotype", "DEMO4c")) {

}

else {

print("#alias#");

}

}

else {

if (hasproperty("diagram.stereotype", "DEMO4n")) {

setorigin("center", 0, 0);

}

else if (hasproperty("diagram.stereotype", "DEMO4c")) {

setorigin("center", 0, 0);

}

else {

setorigin("s", 0, 0);

}

print("#alias#");

}

}

Listing G.4: Composite Actor Role shapescript

// ShapeScript StereoType: DEMO_STEP_INITIATION

shape main{

defsize(20,20);

ellipse(0,0,100,100);

}

Listing G.5: Step Initiation shapescript

// ShapeScript StereoType: DEMO_TRANSACTION_PROCESS_STEP_KIND

shape main

{

noshadow = true;

editablefield = "name";

h_align = "center";

v_align = "top";

print("#name#");

DefSize(50, 50);

if(hasproperty("diagram.mdgtype", "DEMO::DEMO_ARS"))

397

{

AddSubShape("ARSStep", 100, 100, 0, 0);

} else if(hasproperty("diagram.mdgtype", "DEMO::DEMO_TPD"))

{

AddSubShape("TPDStep", 100, 100, 0, 0);

} else {

print("#diagram.mdgtype#");

}

shape ARSStep

{

setfillcolor(255, 255, 255);

setpen(0,0,0,1);

// Happy flow

if(HasTag("TransactionStep_sort", "Request"))

{

setpen(146,208,80,1); // Green-ish

}

if(HasTag("TransactionStep_sort", "Promise"))

{

setpen(146,208,80,1); // Green-ish

}

if(HasTag("TransactionStep_sort", "Declare"))

{

setpen(146,208,80,1); // Green-ish

}

if(HasTag("TransactionStep_sort", "Accept"))

{

setpen(146,208,80,1); // Green-ish

}

if(HasTag("TransactionStep_sort", "Execute"))

{

setpen(76,76,76,1); // Gray-ish

}

// Standard flow

if(HasTag("TransactionStep_sort", "Decline"))

{

setpen(255,192,80,1); // Yellow-ish

}

if(HasTag("TransactionStep_sort", "Quit"))

{

setpen(255,192,80,1); // Yellow-ish

}

if(HasTag("TransactionStep_sort", "Reject"))

{

setpen(255,192,80,1); // Yellow-ish

}

398

if(HasTag("TransactionStep_sort", "Stop"))

{

setpen(255,192,80,1); // Yellow-ish

}

// Error flow

if(HasTag("TransactionStep_sort", "RevokeRequest"))

{

setpen(192,0,0,1); // Red-ish

}

if(HasTag("TransactionStep_sort", "RevokeAccept"))

{

setpen(192,0,0,1); // Red-ish

}

if(HasTag("TransactionStep_sort", "RevokePromise"))

{

setpen(192,0,0,1); // Red-ish

}

if(HasTag("TransactionStep_sort", "RevokeDeclare"))

{

setpen(192,0,0,1); // Red-ish

}

// Error flow refuse

if(HasTag("TransactionStep_sort", "RevokeRequestRefuse"))

{

setpen(192,0,0,1); // Red-ish

}

if(HasTag("TransactionStep_sort", "RevokeAcceptRefuse"))

{

setpen(192,0,0,1); // Red-ish

}

if(HasTag("TransactionStep_sort", "RevokePromiseRefuse"))

{

setpen(192,0,0,1); // Red-ish

}

if(HasTag("TransactionStep_sort", "RevokeDeclareRefuse"))

{

setpen(192,0,0,1); // Red-ish

}

// Error flow allow

if(HasTag("TransactionStep_sort", "RevokeRequestAllow"))

{

setpen(192,0,0,1); // Red-ish

}

if(HasTag("TransactionStep_sort", "RevokeAcceptAllow"))

{

setpen(192,0,0,1); // Red-ish

399

}

if(HasTag("TransactionStep_sort", "RevokePromiseAllow"))

{

setpen(192,0,0,1); // Red-ish

}

if(HasTag("TransactionStep_sort", "RevokeDeclareAllow"))

{

setpen(192,0,0,1); // Red-ish

}

rectangle(0,0,100,100);

}

shape TPDStep

{

setfillcolor(255, 255, 255);

setpen(0,0,0,1);

// Happy flow

if(HasTag("TransactionStep_sort", "Request"))

{

setpen(146,208,80,1); // Green-ish

rectangle(0,0,100,100);

ellipse(0,0,100,100);

}

if(HasTag("TransactionStep_sort", "Promise"))

{

setpen(146,208,80,1); // Green-ish

rectangle(0,0,100,100);

ellipse(0,0,100,100);

}

if(HasTag("TransactionStep_sort", "Declare"))

{

setpen(146,208,80,1); // Green-ish

rectangle(0,0,100,100);

ellipse(0,0,100,100);

}

if(HasTag("TransactionStep_sort", "Accept"))

{

setpen(146,208,80,1); // Green-ish

rectangle(0,0,100,100);

ellipse(0,0,100,100);

}

if(HasTag("TransactionStep_sort", "Execute"))

{

setpen(76,76,76,1); // Gray-ish

rectangle(0,0,100,100);

polygon(50, 50, 4, 40, 0);

}

400

// Standard flow

if(HasTag("TransactionStep_sort", "Decline"))

{

setpen(255,192,80,1); // Yellow-ish

rectangle(0,0,100,100);

ellipse(0,0,100,100);

}

if(HasTag("TransactionStep_sort", "Quit"))

{

setpen(255,192,80,1); // Yellow-ish

rectangle(0,0,100,100);

ellipse(0,0,100,100);

}

if(HasTag("TransactionStep_sort", "Reject"))

{

setpen(255,192,80,1); // Yellow-ish

rectangle(0,0,100,100);

ellipse(0,0,100,100);

}

if(HasTag("TransactionStep_sort", "Stop"))

{

setpen(255,192,80,1); // Yellow-ish

rectangle(0,0,100,100);

ellipse(0,0,100,100);

}

// Error flow

if(HasTag("TransactionStep_sort", "RevokeRequest"))

{

setpen(192,0,0,1); // Red-ish

rectangle(0,0,100,100);

ellipse(0,0,100,100);

}

if(HasTag("TransactionStep_sort", "RevokeAccept"))

{

setpen(192,0,0,1); // Red-ish

rectangle(0,0,100,100);

ellipse(0,0,100,100);

}

if(HasTag("TransactionStep_sort", "RevokePromise"))

{

setpen(192,0,0,1); // Red-ish

rectangle(0,0,100,100);

ellipse(0,0,100,100);

}

if(HasTag("TransactionStep_sort", "RevokeDeclare"))

{

setpen(192,0,0,1); // Red-ish

401

rectangle(0,0,100,100);

ellipse(0,0,100,100);

}

// Error flow refuse

if(HasTag("TransactionStep_sort", "RevokeRequestRefuse"))

{

setpen(192,0,0,1); // Red-ish

rectangle(0,0,100,100);

ellipse(0,0,100,100);

}

if(HasTag("TransactionStep_sort", "RevokeAcceptRefuse"))

{

setpen(192,0,0,1); // Red-ish

rectangle(0,0,100,100);

ellipse(0,0,100,100);

}

if(HasTag("TransactionStep_sort", "RevokePromiseRefuse"))

{

setpen(192,0,0,1); // Red-ish

rectangle(0,0,100,100);

ellipse(0,0,100,100);

}

if(HasTag("TransactionStep_sort", "RevokeDeclareRefuse"))

{

setpen(192,0,0,1); // Red-ish

rectangle(0,0,100,100);

ellipse(0,0,100,100);

}

// Error flow allow

if(HasTag("TransactionStep_sort", "RevokeRequestAllow"))

{

setpen(192,0,0,1); // Red-ish

rectangle(0,0,100,100);

ellipse(0,0,100,100);

}

if(HasTag("TransactionStep_sort", "RevokeAcceptAllow"))

{

setpen(192,0,0,1); // Red-ish

rectangle(0,0,100,100);

ellipse(0,0,100,100);

}

if(HasTag("TransactionStep_sort", "RevokePromiseAllow"))

{

setpen(192,0,0,1); // Red-ish

rectangle(0,0,100,100);

ellipse(0,0,100,100);

402

}

if(HasTag("TransactionStep_sort", "RevokeDeclareAllow"))

{

setpen(192,0,0,1); // Red-ish

rectangle(0,0,100,100);

ellipse(0,0,100,100);

}

// Discussion states

if(HasTag("TransactionStep_sort", "Decline"))

{

ellipse(10,10,90,90);

}

if(HasTag("TransactionStep_sort", "Reject"))

{

ellipse(10,10,90,90);

}

if(HasTag("TransactionStep_sort", "RevokeRequest"))

{

ellipse(10,10,90,90);

}

if(HasTag("TransactionStep_sort", "RevokeAccept"))

{

ellipse(10,10,90,90);

}

if(HasTag("TransactionStep_sort", "RevokePromise"))

{

ellipse(10,10,90,90);

}

if(HasTag("TransactionStep_sort", "RevokeDeclare"))

{

ellipse(10,10,90,90);

}

if(HasTag("WillBeImplemented", "false"))

{

setpen(255,0,0,3); // Red

moveto(0, 0);

lineto(100, 100);

moveto(0, 100);

lineto(100, 0);

}

}

}

shape label{

setorigin("s",0,0);

403

print("#alias#");

}

Listing G.6: Transaction Step shapescript

// ShapeScript StereoType: DEMO_ENTITY_TYPE

shape main{

noshadow=true;

//rounded rectangle

if (HasTag("Composite Entity", "true")){

setfillcolor(191,191,191);

startpath();

moveto(0,0);

lineto(100,0);

lineto(100,100);

lineto(0,100);

lineto(0,0);

endpath();

fillpath();

} else {

setfillcolor(255,255,255);

}

DrawNativeShape();

setpencolor(255,255,255);

setfillcolor(255,255,255);

//triangle(0,0,10,10);

startpath();

moveto(0,0);

lineto(10,0);

lineto(0,10);

lineto(0,0);

endpath();

fillpath();

//triangle(90,0,100,10);

startpath();

moveto(90,0);

lineto(100,0);

lineto(100,10);

lineto(90,0);

endpath();

fillpath();

//triangle(90,90,100,100);

startpath();

moveto(90,100);

lineto(100,100);

404

lineto(100,90);

lineto(90,100);

endpath();

fillpath();

//triangle(0,90,10,100);

startpath();

moveto(0,90);

lineto(10,100);

lineto(0,100);

lineto(0,90);

endpath();

fillpath();

//rectangle

setpen(255,255,255,4);

moveto(0,0);

lineto(100,0);

lineto(100,100);

lineto(0,100);

lineto(0,0);

//rounded rectangle

if (HasTag("Implementation Entity", "true")){

setpen(0,255,255,2);

} else {

setpen(0,0,0,1);

}

moveto(50,0);

lineto(10,0);

bezierto(10,0,0,0,0,10);

lineto(0,90);

bezierto(0,90,0,100,10,100);

lineto(90,100);

bezierto(90,100,100,100,100,90);

lineto(100,10);

bezierto(100,10,100,0,90,0);

lineto(50,0);

shape dummy {

}

shape namesubshape {

h_align = "center";

v_align = "center";

editablefield="name";

println("#name#");

}

405

}

shape label{

editablefield = "alias";

setorigin("s",0,0);

print("#alias#");

}

shape ChildElement

{

if(HasProperty("stereotype", "DEMO_ATTRIBUTE_TYPE"))

{

SetCompartmentName("Attributes");

}

AppendCompartmentText("#NAME#");

}

Listing G.7: Entity shapescript

shape main{

roundrect(0,0,100,100,30,30);

addsubshape("dummy",100,40);

addsubshape("namesubshape",100,20);

shape dummy {

}

shape namesubshape {

h_align = "center";

v_align = "center";

editablefield="name";

println("#name#");

}

}

Listing G.8: Derived Entity type shapescript

shape main

{

noShadow="true";

SetLineStyle("solid");

moveto(0,0);

lineto(100,0);

406

setfixedregion(45,-5,55,5);

moveto(45,-5);

lineto(50,0);

lineto(45,5);

}

shape source {

}

shape target {

}

//shape LeftTopLabel {

// print("LeftTopLabel");

// }

shape MiddleTopLabel {

// print("MiddleTopLabel");

}

// shape RightTopLabel {

// print("RightTopLabel");

// }

// shape LeftBottomLabel {

// print("LeftBottomLabel");

// }

shape MiddleBottomLabel {

print("#name#");

}

// shape RightBottomLabel {

// print("RightBottomLabel");

// }

Listing G.9: Property Type shapescript

// ShapeScript StereoType: DEMO_actionrule_containment

shape main

{

noShadow = "true";

SetLineStyle("solid");

moveto(0,0);

lineto(100,0);

}

shape source

{

407

setfillcolor(getuserbordercolor());

ellipse(-4,-4,4,4);

}

shape target

{

setfillcolor(getuserbordercolor());

startpath();

moveto(0,0);

lineto(10,4);

lineto(10,-4);

lineto(0,0);

endpath();

fillandstrokepath();

}

//shape LeftTopLabel {

// print("LeftTopLabel");

// }

shape MiddleTopLabel{

// print("MiddleTopLabel");

}

// shape RightTopLabel {

// print("RightTopLabel");

// }

// shape LeftBottomLabel {

// print("LeftBottomLabel");

// }

shape MiddleBottomLabel{

print("#name#");

}

// shape RightBottomLabel {

// print("RightBottomLabel");

// }

Listing G.10: Action Rule Containment shapescript

// ShapeScript StereoType: DEMO_ACTION_RULE_when

shape main{

editablefield = "name";

h_align = "center";

v_align = "top";

print("#alias#");

moveto(0, 0);

408

lineto(100, 0);

lineto(100, 80);

lineto(50, 100);

lineto(0, 80);

lineto(0, 0);

}

Listing G.11: Action Rule When shapescript

// ShapeScript StereoType: DEMO_ACTION_RULE_while

shape main{

editablefield = "name";

h_align = "center";

v_align = "top";

print("#alias#");

setlinestyle("dash");

polygon(50,50,8,50,22.5);

}

Listing G.12: Action Rule While shapescript

// ShapeScript StereoType: DEMO_ACTION_RULE_assess

shape main{

editablefield = "name";

h_align = "center";

v_align = "top";

print("#alias#");

rectangle(0, 0, 100, 100);

}

shape ChildElement{

editablefield = "name";

h_align = "center";

v_align = "top";

print("#alias#");

rectangle(0, 0, 100, 100);

}

Listing G.13: Action Rule Assess shapescript

// ShapeScript StereoType: DEMO_ACTION_RULE_then

shape main{

editablefield = "name";

409

h_align = "center";

v_align = "top";

print("#alias#");

moveto(20, 10);

lineto(60, 10);

lineto(60, 0);

lineto(100, 0);

lineto(100, 100);

lineto(60, 100);

lineto(60, 90);

lineto(20, 90);

lineto(0, 50);

lineto(20, 10);

}

Listing G.14: Action Rule Then shapescript

// ShapeScript StereoType: DEMO_ACTION_RULE_else

shape main{

editablefield = "name";

h_align = "center";

v_align = "top";

print("#alias#");

moveto(20, 10);

lineto(60, 10);

lineto(60, 0);

lineto(100, 0);

lineto(100, 90);

lineto(20, 90);

lineto(0, 50);

lineto(20, 10);

}

Listing G.15: Action Rule Else shapescript

G.5.2 Extra Elements

// ShapeScript StereoType: DEMO_WORKINSTRUCTION

shape main{

h_align = "center";

v_align = "top";

editablefield = "name";

DefSize(50,20);

410

rectangle(0,0,100,100);

rectangle(0,20,100,100);

rectangle(0,40,100,100);

rectangle(0,60,100,100);

rectangle(0,80,100,100);

print("#name#");

}

shape label

{

editablefield="alias";

setorigin("s",0,0);

print("#alias#");

}

Listing G.16: Workinstruction shapescript

// ShapeScript StereoType: DEMO_DUPLICATE

shape main{

DefSize(50,50);

if (HasTag("ElementType", "TransactionKind"))

{

if (hasproperty("diagram.mdgtype", "DEMO::DEMO_OCD"))

{

AddSubShape("OCDTransactionKind", 100, 100, 0, 0);

}

else if (hasproperty("diagram.mdgtype", "DEMO::DEMO_PSD"))

{

if (hasproperty("diagram.stereotype", "DEMO4n")) {

AddSubShape("OCDTransactionKind", 100, 100, 0, 0);

}

else if (hasproperty("diagram.stereotype", "DEMO4c")) {

AddSubShape("OCDTransactionKind", 100, 100, 0, 0);

}

else {

AddSubShape("PSDTransactionKind", 100, 100, 0, 0);

}

}

else if (hasproperty("diagram.mdgtype", "DEMO::DEMO_OFD"))

{

AddSubShape("OFDTransactionKind", 100, 100, 0, 0);

}

else if (hasproperty("diagram.mdgtype", "DEMO::DEMO_TPD"))

{

411

AddSubShape("TPDTransactionKind", 100, 100, 0, 0);

}

else if (hasproperty("diagram.mdgtype", "DEMO::DEMO_SRD"))

{

AddSubShape("SRDTransactionKind", 100, 100, 0, 0);

}

else {

print("#diagram.mdgtype#");

}

shape OFDTransactionKind

{

h_align = "center";

v_align = "center";

editablefield = "name";

fixedAspectRatio = "true";

DefSize(50,50);

setpenwidth(2);

//SetFillColor(255, 255, 255);

//roundrect(0, 0, 100, 100, 30, 30);

//SetPenColor(0, 0, 0);

if (HasTag("transaction sort", "original"))

{

SetPenColor(255, 0, 0);

}

else if (HasTag("transaction sort", "informational"))

{

SetPenColor(0, 255, 0);

}

else if (HasTag("transaction sort", "documental"))

{

SetPenColor(0, 0, 255);

}

else if (HasTag("transaction sort", "fysical"))

{

SetPenColor(128, 128, 128);

}

setlinestyle("dot");

polygon(50, 50, 4, 50, 0);

print("#tag:Product Kind#");

}

shape SRDTransactionKind

{

h_align = "center";

v_align = "center";

editablefield = "name";

412

fixedAspectRatio = "true";

DefSize(50,50);

setlinestyle("dot");

SetFillColor(127, 127, 127);

SetPenColor(0, 0, 0);

polygon(50, 50, 4, 71, 45);

SetFillColor(191, 191, 191);

polygon(50, 50, 4, 50, 0);

print("#tag:Product Kind#");

}

shape OCDTransactionKind

{

h_align = "center";

v_align = "center";

editablefield = "name";

fixedAspectRatio = "true";

DefSize(50,50);

setpenwidth(2);

SetFillColor(255, 255, 255);

setlinestyle("dot");

if (HasTag("ECF Missing", "true"))

{

setlinestyle("dashdot");

}

SetPenColor(0, 0, 0);

Ellipse(0, 0, 100, 100);

setlinestyle("solid");

setlinestyle("dot");

if (HasTag("transaction sort", "original"))

{

SetPenColor(255, 0, 0);

}

else if (HasTag("transaction sort", "informational"))

{

SetPenColor(0, 255, 0);

}

else if (HasTag("transaction sort", "documental"))

{

SetPenColor(0, 0, 255);

}

else if (HasTag("transaction sort", "fysical"))

{

SetPenColor(128, 128, 128);

413

}

polygon(50, 50, 4, 50, 0);

print("#name#");

}

shape PSDTransactionKind

{

defsize(200, 40);

setpenwidth(2);

setlinestyle("dot");

roundrect(0, 0, 100, 100, 100, 100);

fillandstrokepath();

addsubshape("ex", 20, 100, 40, 0);

}

shape TPDTransactionKind

{

defsize(50, 50);

setpenwidth(2);

setlinestyle("dot");

roundrect(0, 0, 100, 100, 100, 100);

fillandstrokepath();

addsubshape("ex", 20, 100, 40, 0);

}

shape ex

{

h_align = "center";

v_align = "center";

editablefield = "name";

setlinestyle("dot");

setpenwidth(2);

println("#name#");

if (HasTag("transaction sort", "original"))

{

SetPenColor(255, 0, 0);

}

else if (HasTag("transaction sort", "informational"))

{

SetPenColor(0, 255, 0);

}

else if (HasTag("transaction sort", "documental"))

{

SetPenColor(0, 0, 255);

}

else if (HasTag("transaction sort", "fysical"))

{

414

SetPenColor(128, 128, 128);

}

polygon(50, 50, 4, 50, 0);

}

}

else

if (HasTag("ElementType", "ElementaryActorRole"))

{

if (hasproperty("diagram.mdgtype", "DEMO::DEMO_PSD")) {

if (hasproperty("diagram.stereotype", "DEMO4n")) {

AddSubShape("PSDNormal", 100, 100, 0, 0);

}

else if (hasproperty("diagram.stereotype", "DEMO4c")) {

AddSubShape("PSDNormal", 100, 100, 0, 0);

}

else {

AddSubShape("PSDSwimlane", 100, 100, 0, 0);

}

}

else {

AddSubShape("PSDNormal", 100, 100, 0, 0);

}

shape PSDSwimlane

{

h_align = "left";

v_align = "top";

editablefield = "name";

DefSize(30,200);

setpen(220,220,220,3);

moveto(0,100);

lineto(100,100);

print("#name#");

}

shape PSDNormal

{

h_align = "center";

v_align = "top";

editablefield = "name";

DefSize(50,50);

// ECF Missing // ECF 1, 10, 20

setpenwidth(2);

setlinestyle("dot");

if (HasTag("ECF Missing", "true"))

{

setlinestyle("dashdot");

415

}

rectangle(0,0,100,100);

print("#name#");

}

}

else

if (HasTag("ElementType", "CompositeActorRole"))

{

if (hasproperty("diagram.mdgtype", "DEMO::DEMO_PSD")) {

if (hasproperty("diagram.stereotype", "DEMO4n")) {

AddSubShape("CARNormal", 100, 100, 0, 0);

}

else if (hasproperty("diagram.stereotype", "DEMO4c")) {

AddSubShape("CARNormal", 100, 100, 0, 0);

}

else {

AddSubShape("PSDSwimlane", 100, 100, 0, 0);

}

}

else {

AddSubShape("CARNormal", 100, 100, 0, 0);

}

shape PSDSwimlane

{

h_align = "left";

v_align = "top";

editablefield = "name";

DefSize(30,200);

if (HasProperty(’rectanglenotation’, ’0’))

{

}

else

{

}

moveto(0,100);

lineto(100,100);

print("#name#");

}

shape CARNormal

{

h_align = "center";

v_align = "top";

editablefield = "name";

DefSize(50,50);

setpenwidth(2);

setlinestyle("dot");

416

// ECF Missing // ECF 1, 10, 20

if (HasTag("ECF Missing", "true"))

{

setlinestyle("dashdot");

}

if (HasProperty(’rectanglenotation’, ’0’))

{

setfillcolor(220, 220, 220);

rectangle(0, 0, 100, 100);

// code for iconic representation

}

else

{

setpen(220, 220, 220, 5);

rectangle(0, 0, 100, 100);

// code for rectangular representation

// e.g. Rectangle or DrawNativeShape

}

rectangle(0,0,100,100);

print("#name#");

}

}

else

if (HasTag("ElementType", "AggregateTransactionKind"))

{

DefSize(50,50);

setfillcolor(220,220,220);

setlinestyle("dot");

setpenwidth(2);

ellipse(5,0,105,100);

ellipse(0,0,100,100);

if (hasproperty("diagram.stereotype", "DEMO4n")) {

if (HasTag("transaction sort", "original"))

{

SetPenColor(255, 0, 0);

}

else if (HasTag("transaction sort", "informational"))

{

SetPenColor(0, 255, 0);

}

else if (HasTag("transaction sort", "documental"))

{

SetPenColor(0, 0, 255);

}

else if (HasTag("transaction sort", "fysical"))

{

417

SetPenColor(128, 128, 128);

}

}

else if (hasproperty("diagram.stereotype", "DEMO4c")) {

if (HasTag("transaction sort", "original"))

{

SetPenColor(255, 0, 0);

}

else if (HasTag("transaction sort", "informational"))

{

SetPenColor(0, 255, 0);

}

else if (HasTag("transaction sort", "documental"))

{

SetPenColor(0, 0, 255);

}

else if (HasTag("transaction sort", "fysical"))

{

SetPenColor(128, 128, 128);

}

}

polygon(50,50,4,50,0);

print("#name#");

}

else

{

// question mark in 3 sections

setpen(255, 0, 0, 2);

moveto(50, 90);

lineto(50, 70);

arcto(20, 10, 80, 70, 50, 70, 80, 40);

arcto(20, 10, 80, 70, 80, 40, 20, 40);

}

shape PSDSwimlane

{

h_align = "left";

v_align = "top";

editablefield = "name";

DefSize(30,200);

setpen(220,220,220,3);

setlinestyle("dot");

moveto(0,100);

lineto(100,100);

print("#name#");

}

}

418

shape label{

editablefield = "alias";

if (HasTag("ElementType", "TransactionKind"))

{

setorigin("s",0,0);

if (hasproperty("diagram.stereotype", "DEMO4n")) {

}

else if (hasproperty("diagram.stereotype", "DEMO4c")) {

}

else {

print("#alias#");

}

}

else

{

if (hasproperty("diagram.mdgtype", "DEMO::DEMO_PSD")) {

if (hasproperty("diagram.stereotype", "DEMO4n")) {

setorigin("center", 0, 0);

}

else if (hasproperty("diagram.stereotype", "DEMO4c")) {

setorigin("center", 0, 0);

}

else

{

setorigin("w", 0, 0);

}

}

else {

setorigin("s", 0, 0);

}

//print("#alias#");

if (hasproperty("diagram.mdgtype", "DEMO::DEMO_OCD"))

{

print("#alias#");

}

else if (hasproperty("diagram.mdgtype", "DEMO::DEMO_PSD"))

{

if (hasproperty("diagram.stereotype", "DEMO4n")) {

print("#alias#");

}

else if (hasproperty("diagram.stereotype", "DEMO4c")) {

print("#alias#");

}

else {

print("#alias#");

}

419

}

else if (hasproperty("diagram.mdgtype", "DEMO::DEMO_OFD"))

{

print("#tag:Product Kind Formulation#");

}

else if (hasproperty("diagram.mdgtype", "DEMO::DEMO_TPD"))

{

print("#alias#");

}

else if (hasproperty("diagram.mdgtype", "DEMO::DEMO_SRD"))

{

print("#alias#");

}

else {

print("#diagram.mdgtype#");

}

}

}

Listing G.17: Duplicate shapescript

// ShapeScript StereoType: DEMO_SECURITY_FUNCTION

shape main{

h_align = "center";

v_align = "top";

editablefield = "name";

defsize(50,50);

setpencolor(255,0,255);

rectangle(0,0,100,100);

print("#name#");

}

decoration lock {

orientation = "NE";

rectangle(20,40,80,100);

setfillcolor(255,0,255);

fillpath();

setfillcolor(255,255,255);

rectangle(45,60,55,80);

fillpath();

setpencolor(255,0,255);

moveto(70,40);

setpen(255,0,255,2);

420

arcto(30,10,70,60,70,40,50,0);

arcto(30,10,70,60,50,00,30,40);

}

shape label

{

editablefield="alias";

setorigin("s",0,0);

print("#alias#");

}

Listing G.18: Security Function shapescript

// ShapeScript StereoType: DEMO_SECURITY_ROLE

shape main{

h_align = "center";

v_align = "top";

editablefield = "name";

defsize(50,50);

setpencolor(255,0,96);

rectangle(0,0,100,100);

print("#name#");

}

decoration lock {

orientation = "NE";

setpencolor(255,0,96);

setfillcolor(255,0,96);

ellipse(20,40,80,100);

//setfillcolor(255,0,127);

fillpath();

setfillcolor(255,255,255);

rectangle(45,60,55,80);

fillpath();

setpencolor(255,0,96);

moveto(70,40);

setpen(255,0,96,2);

arcto(30,10,70,60,70,50,50,0);

arcto(30,10,70,60,50,00,30,50);

}

shape label

{

421

editablefield="alias";

setorigin("s",0,0);

print("#alias#");

}

Listing G.19: Security Role shapescript

// ShapeScript StereoType: DEMO_ACTOR

shape main{

h_align = "center";

v_align = "top";

editablefield = "name";

DefSize(50,50);

if (HasTag("internal", "true")){

setfillcolor(255,255,192);

} else {

setfillcolor(200,200,32);

}

rectangle(0,0,100,100);

print("#name#");

}

shape label{

editablefield = "alias";

setorigin("s",0,0);

print("#alias#");

}

Listing G.20: Actor shapescript

// ShapeScript StereoType: DEMO_SoI_BOUNDARY

shape main{

editablefield = "name";

h_align = "right";

v_align = "top";

print("#name#");

DefSize(50, 50);

setfillcolor(255, 255, 255);

setpen(128,128,128,6);

rectangle(0,0,100,100);

}

shape label{

422

}

Listing G.21: Boundary shapescript

shape main{

h_align = "center";

v_align = "center";

editablefield = "name";

defsize(50,50);

ellipse(0,0,100,100);

moveto(50,0);

lineto(50,100);

moveto(0,50);

lineto(100,50);

setpen(0,127,0,6);

//Knowledge

moveto(28,23);

lineto(28,45);

moveto(39,23);

lineto(30,34);

lineto(39,45);

//Abilities

moveto(61,45);

lineto(67,23);

lineto(73,45);

moveto(63,38);

lineto(71,38);

//Motivation

//Personality

print("#name#");

}

shape label

{

editablefield="alias";

setorigin("s",0,0);

print("#alias#");

}

Listing G.22: Competence shapescript

423

shape main{

rectangle(0,0,100,100);

print("#alias#");

}

Listing G.23: Interview Line shapescript

shape main{

noshadow=true;

DrawNativeShape();

}

Listing G.24: Conversion Rule shapescript

G.5.3 Connectors

// ShapeScript StereoType: DEMO_initiator

shape main

{

noShadow = "true";

SetLineStyle("solid");

if (hasproperty("diagram.stereotype", "DEMO4c")) {

}

else if (hasproperty("diagram.mdgtype", "DEMO::DEMO_PSD")) {

}

else

{

moveto(0, 0);

lineto(100, 0);

}

}

shape source

{

// No source side drawing

}

shape target

{

// No target side drawing

}

//shape LeftTopLabel {

// print("LeftTopLabel");

424

// }

shape MiddleTopLabel{

// print("MiddleTopLabel");

}

// shape RightTopLabel {

// print("RightTopLabel");

// }

// shape LeftBottomLabel {

// print("LeftBottomLabel");

// }

shape MiddleBottomLabel{

print("#name#");

}

// shape RightBottomLabel {

// print("RightBottomLabel");

// }

Listing G.25: Initiator shapescript

// ShapeScript StereoType: DEMO_executor

shape main

{

noShadow = "true";

SetLineStyle("solid");

if (hasproperty("diagram.stereotype", "DEMO4n")) {

}

else if (hasproperty("diagram.stereotype", "DEMO4c")) {

}

else if (hasproperty("diagram.mdgtype", "DEMO::DEMO_PSD")) {

}

else

{

moveto(0,0);

lineto(100,0);

}

}

shape source

{

// No source side drawing

}

shape target

{

// Target side an black filled diamond

425

if (hasproperty("diagram.stereotype", "DEMO4n")) {

}

else if (hasproperty("diagram.stereotype", "DEMO4c")) {

}

else if (hasproperty("diagram.mdgtype", "DEMO::DEMO_PSD")) {

}

else

{

SetFillColor(0,0,0);

polygon(0,0,4,5,0);

}

}

//shape LeftTopLabel {

// print("LeftTopLabel");

// }

shape MiddleTopLabel{

// print("MiddleTopLabel");

}

// shape RightTopLabel {

// print("RightTopLabel");

// }

// shape LeftBottomLabel {

// print("LeftBottomLabel");

// }

shape MiddleBottomLabel{

print("#name#");

}

// shape RightBottomLabel {

// print("RightBottomLabel");

// }

Listing G.26: Executor shapescript

// ShapeScript StereoType: DEMO_bank_access

shape main

{

noShadow = "true";

SetLineStyle("dash");

moveto(0,0);

lineto(100,0);

}

shape source

{

426

// No source side drawing

}

shape target

{

// No target side drawing

}

//shape LeftTopLabel {

// print("LeftTopLabel");

// }

shape MiddleTopLabel{

// print("MiddleTopLabel");

}

// shape RightTopLabel {

// print("RightTopLabel");

// }

// shape LeftBottomLabel {

// print("LeftBottomLabel");

// }

shape MiddleBottomLabel{

print("#name#");

}

// shape RightBottomLabel {

// print("RightBottomLabel");

// }

Listing G.27: Bank Access shapescript

// ShapeScript StereoType: DEMO_Containedin

shape main

{

noShadow = "true";

SetLineStyle("dash");

moveto(0,0);

lineto(100,0);

}

shape source

{

// No source side drawing

}

shape target{ // draw an arrowhead at the target end

StartPath();

427

MoveTo(0,0);

LineTo(15,9);

LineTo(15,-9);

EndPath();

FillAndStrokePath();

}

//shape LeftTopLabel {

// print("LeftTopLabel");

// }

shape MiddleTopLabel{

// print("MiddleTopLabel");

}

// shape RightTopLabel {

// print("RightTopLabel");

// }

// shape LeftBottomLabel {

// print("LeftBottomLabel");

// }

shape MiddleBottomLabel{

print("#name#");

}

// shape RightBottomLabel {

// print("RightBottomLabel");

// }

Listing G.28: ContainedIn shapescript

// ShapeScript StereoType: DEMO_call_link

shape main{

noshadow = true;

SetLineStyle("solid");

setpencolor(255,255,0);

if (hasproperty("diagram.mdgtype", "DEMO::DEMO_PSD"))

{

setpencolor(0,0,0);

}

// draw a solid line

MoveTo(0,0);

LineTo(100,0);

}

shape source{

if (hasproperty("diagram.mdgtype", "DEMO::DEMO_PSD"))

{

Ellipse(-5,-5,5,5);

428

}

}

shape target{

if (hasproperty("diagram.mdgtype", "DEMO::DEMO_PSD"))

{

MoveTo(0,0);

SetFillColor(0,0,0);

polygon(10,0,3,5,180);

SetFillColor(252,242,227); // default color

Rectangle(-5,-5,5,5);

}

}

//shape LeftTopLabel {

// print("#tag:From C-fact#");

// }

shape MiddleTopLabel{

// print("MiddleTopLabel");

}

// shape RightTopLabel {

// print("RightTopLabel");

// }

// shape LeftBottomLabel {

// print("LeftBottomLabel");

// }

shape MiddleBottomLabel{

// print("MiddleBottomLabel");

}

// shape RightBottomLabel {

// print("#tag:To C-act#");

// }

Listing G.29: Call shapescript

// ShapeScript StereoType: DEMO_wait_link

shape main{

// draw a dashed line

noshadow = true;

SetLineStyle("dash");

setpencolor(255,255,0);

if (hasproperty("diagram.mdgtype", "DEMO::DEMO_PSD"))

{

setpencolor(0,0,0);

429

}

MoveTo(0, 0);

LineTo(100, 0);

}

shape source{

if (hasproperty("diagram.mdgtype", "DEMO::DEMO_PSD"))

{

Ellipse(-5,-5,5,5);

}

}

shape target{

if (hasproperty("diagram.mdgtype", "DEMO::DEMO_PSD"))

{

MoveTo(0,0);

SetFillColor(0,0,0);

polygon(10,0,3,5,180);

SetFillColor(252,242,227); // default color

Rectangle(-5,-5,5,5);

}

}

//shape LeftTopLabel {

// print("#tag:From C-fact#");

// }

shape MiddleTopLabel{

// print("MiddleTopLabel");

}

// shape RightTopLabel {

// print("RightTopLabel");

// }

// shape LeftBottomLabel {

// print("LeftBottomLabel");

// }

shape MiddleBottomLabel{

// print("MiddleBottomLabel");

}

// shape RightBottomLabel {

// print("#tag:To C-act#");

// }

Listing G.30: Wait shapescript

// ShapeScript StereoType: DEMO_steprule

430

shape main

{

noShadow = "true";

SetLineStyle("solid");

moveto(0,0);

lineto(100,0);

}

shape source

{

}

shape target

{

setfillcolor(getuserbordercolor());

startpath();

moveto(0,0);

lineto(10,4);

lineto(10,-4);

lineto(0,0);

endpath();

fillandstrokepath();

}

//shape LeftTopLabel {

// print("LeftTopLabel");

// }

shape MiddleTopLabel{

// print("MiddleTopLabel");

}

// shape RightTopLabel {

// print("RightTopLabel");

// }

// shape LeftBottomLabel {

// print("LeftBottomLabel");

// }

shape MiddleBottomLabel{

print("#name#");

}

// shape RightBottomLabel {

// print("RightBottomLabel");

// }

Listing G.31: Step rule shapescript

431

// ShapeScript StereoType: DEMO_reference

shape main

{

noShadow = "true";

SetLineStyle("solid");

moveto(0,0);

lineto(100,0);

setfixedregion(40,-10,60,10);

SetLineStyle("solid");

moveto(45,-5);

lineto(55,0);

moveto(55,0);

lineto(45,5);

}

shape source{

}

shape target{

}

//shape LeftTopLabel {

// print("LeftTopLabel");

// }

shape MiddleTopLabel{

// print("MiddleTopLabel");

}

// shape RightTopLabel {

// print("RightTopLabel");

// }

// shape LeftBottomLabel {

// print("LeftBottomLabel");

// }

shape MiddleBottomLabel{

print("#name#");

}

// shape RightBottomLabel {

// print("RightBottomLabel");

// }

Listing G.32: Reference shapescript

432

// ShapeScript StereoType: DEMO_aggregation

shape main{ // draw a dashed line

noshadow = true;

SetLineStyle("dash");

MoveTo(0,0);

LineTo(100,0);

}

shape target{ // draw an arrowhead at the target end

StartPath();

MoveTo(0,0);

LineTo(30,18);

LineTo(30,-18);

EndPath();

FillAndStrokePath();

MoveTo(15, 0);

LineTo(27, 0);

MoveTo(21, 6);

LineTo(21, -6);

MoveTo(17, 4);

LineTo(25, -4);

MoveTo(25, 4);

LineTo(17, -4);

}

//shape LeftTopLabel {

// print("#tag:From C-fact#");

// }

shape MiddleTopLabel{

// print("MiddleTopLabel");

}

// shape RightTopLabel {

// print("RightTopLabel");

// }

// shape LeftBottomLabel {

// print("LeftBottomLabel");

// }

shape MiddleBottomLabel{

// print("MiddleBottomLabel");

}

// shape RightBottomLabel {

// print("#tag:To C-act#");

// }

433

Listing G.33: Aggregation shapescript

// ShapeScript StereoType: DEMO_specialisation

shape main{ // draw a dashed line

noshadow = true;

SetLineStyle("dash");

MoveTo(0,0);

LineTo(100,0);

}

shape target{ // draw an arrowhead at the target end

setfillcolor(255,255,255);

StartPath();

MoveTo(0,0);

LineTo(10,5);

LineTo(10,-5);

LineTo(0,0);

EndPath();

FillAndStrokePath();

}

Listing G.34: Specialisation shapescript

// ShapeScript StereoType: DEMO_generalisation

shape main{ // draw a dashed line

noshadow = true;

SetLineStyle("dash");

MoveTo(0,0);

LineTo(100,0);

}

shape target{ // draw an arrowhead at the target end

StartPath();

MoveTo(0,0);

LineTo(30,18);

LineTo(30,-18);

EndPath();

FillAndStrokePath();

MoveTo(15,0);

LineTo(27,0);

MoveTo(21,6);

LineTo(21,-6);

}

434

//shape LeftTopLabel {

// print("#tag:From C-fact#");

// }

shape MiddleTopLabel{

// print("MiddleTopLabel");

}

// shape RightTopLabel {

// print("RightTopLabel");

// }

// shape LeftBottomLabel {

// print("LeftBottomLabel");

// }

shape MiddleBottomLabel{

// print("MiddleBottomLabel");

}

// shape RightBottomLabel {

// print("#tag:To C-act#");

// }

Listing G.35: Generalisation shapescript

// ShapeScript StereoType: DEMO_excludes

shape main

{

noShadow = "true";

SetLineStyle("dash");

moveto(0,0);

lineto(100,0);

setfixedregion(40,-10,60,10);

SetLineStyle("solid");

Ellipse(40,-10,60,10);

moveto(45,-5);

lineto(55,5);

moveto(55,-5);

lineto(45,5);

}

shape source{

}

shape target{

}

435

//shape LeftTopLabel {

// print("LeftTopLabel");

// }

shape MiddleTopLabel{

// print("MiddleTopLabel");

}

// shape RightTopLabel {

// print("RightTopLabel");

// }

// shape LeftBottomLabel {

// print("LeftBottomLabel");

// }

shape MiddleBottomLabel{

print("#name#");

}

// shape RightBottomLabel {

// print("RightBottomLabel");

// }

Listing G.36: Exclude shapescript

// ShapeScript StereoType: DEMO_precedence

shape main

{

noShadow = "true";

SetLineStyle("dash");

moveto(0,0);

lineto(100,0);

}

shape source{

}

shape target{

setfillcolor(getuserbordercolor());

SetLineStyle("solid");

moveto(10,-5);

lineto(0,0);

moveto(10,5);

lineto(0,0);

}

436

//shape LeftTopLabel {

// print("LeftTopLabel");

// }

shape MiddleTopLabel{

// print("MiddleTopLabel");

}

// shape RightTopLabel {

// print("RightTopLabel");

// }

// shape LeftBottomLabel {

// print("LeftBottomLabel");

// }

shape MiddleBottomLabel{

print("#name#");

}

// shape RightBottomLabel {

// print("RightBottomLabel");

// }

Listing G.37: Precedence shapescript

// ShapeScript StereoType: DEMO_preclusion

shape main

{

noShadow = "true";

SetLineStyle("dash");

moveto(0,0);

lineto(100,0);

setfixedregion(40,-10,60,10);

SetLineStyle("solid");

Ellipse(40,-10,60,10);

moveto(45,-5);

lineto(55,5);

moveto(55,-5);

lineto(45,5);

}

shape source{

}

shape target{

setfillcolor(getuserbordercolor());

SetLineStyle("solid");

437

moveto(0,-5);

lineto(10,0);

moveto(0,5);

lineto(10,0);

}

//shape LeftTopLabel {

// print("LeftTopLabel");

// }

shape MiddleTopLabel{

// print("MiddleTopLabel");

}

// shape RightTopLabel {

// print("RightTopLabel");

// }

// shape LeftBottomLabel {

// print("LeftBottomLabel");

// }

shape MiddleBottomLabel{

print("#name#");

}

// shape RightBottomLabel {

// print("RightBottomLabel");

// }

Listing G.38: Preclusion shapescript

shape main { // draw a dashed line

noshadow=true;

SetLineStyle("solid");

MoveTo(0,0);

LineTo(100,0);

}

shape source {

}

shape target {

}

//shape LeftTopLabel {

// print("LeftTopLabel");

// }

shape MiddleTopLabel {

// print("MiddleTopLabel");

438

}

// shape RightTopLabel {

// print("RightTopLabel");

// }

// shape LeftBottomLabel {

// print("LeftBottomLabel");

// }

shape MiddleBottomLabel {

print("#name#");

}

// shape RightBottomLabel {

// print("RightBottomLabel");

// }

Listing G.39: Concerns shapescript

// ShapeScript StereoType: DEMO_withclause

shape main

{

noShadow = "true";

SetLineStyle("solid");

moveto(0,0);

lineto(100,0);

}

shape source

{

}

shape target

{

setfillcolor(getuserbordercolor());

startpath();

moveto(0,0);

lineto(10,4);

lineto(10,-4);

lineto(0,0);

endpath();

fillandstrokepath();

}

//shape LeftTopLabel {

// print("LeftTopLabel");

// }

439

shape MiddleTopLabel{

// print("MiddleTopLabel");

}

// shape RightTopLabel {

// print("RightTopLabel");

// }

// shape LeftBottomLabel {

// print("LeftBottomLabel");

// }

shape MiddleBottomLabel{

print("#name#");

}

// shape RightBottomLabel {

// print("RightBottomLabel");

// }

Listing G.40: With clause shapescript

// ShapeScript StereoType: DEMO_hidden

shape main

{

noShadow = "true";

SetLineStyle("solid");

moveto(0,0);

lineto(100,0);

}

shape source

{

// No source side drawing

}

shape target

{

// No target side drawing

}

//shape LeftTopLabel {

// print("LeftTopLabel");

// }

shape MiddleTopLabel{

// print("MiddleTopLabel");

}

// shape RightTopLabel {

// print("RightTopLabel");

440

// }

// shape LeftBottomLabel {

// print("LeftBottomLabel");

// }

shape MiddleBottomLabel{

print("#name#");

}

// shape RightBottomLabel {

// print("RightBottomLabel");

// }

Listing G.41: Link CM Hidden shapescript

G.5.4 Extra Connectors

// ShapeScript StereoType: DEMO_describes

shape main{

noshadow = true;

if (hasproperty("diagram.mdgtype", "DEMO::DEMO_OCD"))

{

// draw a solid line

SetLineStyle("solid");

MoveTo(0,0);

LineTo(100,0);

} else

{

SetPencolor(255,0,0);

// draw a solid line

SetLineStyle("solid");

MoveTo(0,0);

LineTo(100,0);

}

}

Listing G.42: Describes shapescript

// ShapeScript StereoType: DEMO_ManagerOf

shape main

{

noShadow = "true";

SetLineStyle("dot");

moveto(0,0);

lineto(100,0);

}

441

shape source

{

// No source side drawing

}

shape target{ // draw an arrowhead at the target end

MoveTo(7,4);

LineTo(0,0);

LineTo(7,-4);

}

//shape LeftTopLabel {

// print("LeftTopLabel");

// }

shape MiddleTopLabel{

// print("MiddleTopLabel");

}

// shape RightTopLabel {

// print("RightTopLabel");

// }

// shape LeftBottomLabel {

// print("LeftBottomLabel");

// }

shape MiddleBottomLabel{

print("#name#");

}

// shape RightBottomLabel {

// print("RightBottomLabel");

// }

Listing G.43: Executed By shapescript

// ShapeScript StereoType: DEMO_ManagerOf

shape main

{

noShadow = "true";

SetLineStyle("dashdot");

moveto(0,0);

lineto(100,0);

}

shape source

{

// No source side drawing

442

}

shape target{ // draw an arrowhead at the target end

MoveTo(7,4);

LineTo(0,0);

LineTo(7,-4);

}

//shape LeftTopLabel {

// print("LeftTopLabel");

// }

shape MiddleTopLabel{

// print("MiddleTopLabel");

}

// shape RightTopLabel {

// print("RightTopLabel");

// }

// shape LeftBottomLabel {

// print("LeftBottomLabel");

// }

shape MiddleBottomLabel{

print("#name#");

}

// shape RightBottomLabel {

// print("RightBottomLabel");

// }

Listing G.44: Managed By shapescript

// ShapeScript StereoType: DEMO_hidden

shape main

{

noShadow = "true";

SetLineStyle("solid");

moveto(0,0);

lineto(100,0);

}

shape source

{

// No source side drawing

}

shape target{ // draw an arrowhead at the target end

MoveTo(15,9);

443

LineTo(0,0);

LineTo(15,-9);

}

//shape LeftTopLabel {

// print("LeftTopLabel");

// }

shape MiddleTopLabel{

// print("MiddleTopLabel");

}

// shape RightTopLabel {

// print("RightTopLabel");

// }

// shape LeftBottomLabel {

// print("LeftBottomLabel");

// }

shape MiddleBottomLabel{

print("#name#");

}

// shape RightBottomLabel {

// print("RightBottomLabel");

// }

Listing G.45: Measurement shapescript

// ShapeScript StereoType: DEMO_MeasuredBy

shape main

{

noShadow = "true";

SetLineStyle("dot");

moveto(0,0);

lineto(100,0);

}

shape source

{

// No source side drawing

}

shape target{ // draw an arrowhead at the target end

MoveTo(7,4);

LineTo(0,0);

LineTo(7,-4);

}

444

//shape LeftTopLabel {

// print("LeftTopLabel");

// }

shape MiddleTopLabel{

// print("MiddleTopLabel");

}

// shape RightTopLabel {

// print("RightTopLabel");

// }

// shape LeftBottomLabel {

// print("LeftBottomLabel");

// }

shape MiddleBottomLabel{

print("#name#");

}

// shape RightBottomLabel {

// print("RightBottomLabel");

// }

Listing G.46: Measuring shapescript

// ShapeScript StereoType: DEMO_hidden

shape main

{

noShadow = "true";

SetLineStyle("solid");

moveto(0,0);

lineto(100,0);

}

shape source

{

// No source side drawing

}

shape target{ // draw an arrowhead at the target end

MoveTo(15,9);

LineTo(0,0);

LineTo(15,-9);

}

//shape LeftTopLabel {

// print("LeftTopLabel");

// }

shape MiddleTopLabel{

445

// print("MiddleTopLabel");

}

// shape RightTopLabel {

// print("RightTopLabel");

// }

// shape LeftBottomLabel {

// print("LeftBottomLabel");

// }

shape MiddleBottomLabel{

print("#name#");

}

// shape RightBottomLabel {

// print("RightBottomLabel");

// }

Listing G.47: Needs shapescript

// ShapeScript StereoType: DEMO_processorder

shape main

{

noShadow = "true";

SetLineStyle("solid");

moveto(0,0);

lineto(100,0);

}

shape source

{

}

shape target

{

setfillcolor(getuserbordercolor());

startpath();

moveto(0,0);

lineto(10,4);

lineto(10,-4);

lineto(0,0);

endpath();

fillandstrokepath();

}

//shape LeftTopLabel {

// print("LeftTopLabel");

446

// }

shape MiddleTopLabel{

// print("MiddleTopLabel");

}

// shape RightTopLabel {

// print("RightTopLabel");

// }

// shape LeftBottomLabel {

// print("LeftBottomLabel");

// }

shape MiddleBottomLabel{

print("#name#");

}

// shape RightBottomLabel {

// print("RightBottomLabel");

// }

Listing G.48: Process Order shapescript

// ShapeScript StereoType: DEMO_ManagerOf

shape main

{

noShadow = "true";

SetLineStyle("dashdotdot");

moveto(0,0);

lineto(100,0);

}

shape source

{

// No source side drawing

}

shape target{ // draw an arrowhead at the target end

MoveTo(7,4);

LineTo(0,0);

LineTo(7,-4);

}

//shape LeftTopLabel {

// print("LeftTopLabel");

// }

shape MiddleTopLabel{

// print("MiddleTopLabel");

}

447

// shape RightTopLabel {

// print("RightTopLabel");

// }

// shape LeftBottomLabel {

// print("LeftBottomLabel");

// }

shape MiddleBottomLabel{

print("#name#");

}

// shape RightBottomLabel {

// print("RightBottomLabel");

// }

Listing G.49: Role Of shapescript

// ShapeScript StereoType: DEMO_hidden

shape main

{

noShadow = "true";

SetLineStyle("solid");

moveto(0,0);

lineto(100,0);

}

shape source

{

// No source side drawing

}

shape target{ // draw an arrowhead at the target end

MoveTo(15,9);

LineTo(0,0);

LineTo(15,-9);

}

//shape LeftTopLabel {

// print("LeftTopLabel");

// }

shape MiddleTopLabel{

// print("MiddleTopLabel");

}

// shape RightTopLabel {

// print("RightTopLabel");

// }

// shape LeftBottomLabel {

448

// print("LeftBottomLabel");

// }

shape MiddleBottomLabel{

print("#name#");

}

// shape RightBottomLabel {

// print("RightBottomLabel");

// }

Listing G.50: Supporting shapescript

// ShapeScript StereoType: DEMO_MeasuredBy

shape main

{

noShadow = "true";

SetLineStyle("solid");

moveto(0,0);

lineto(100,0);

}

shape source

{

// No source side drawing

}

shape target{ // draw an arrowhead at the target end

setfillcolor(0,0,0);

setpen(0,0,0);

startpath();

MoveTo(7,4);

LineTo(0,0);

LineTo(7,-4);

endpath();

fillandstrokepath();

}

//shape LeftTopLabel {

// print("LeftTopLabel");

// }

shape MiddleTopLabel{

// print("MiddleTopLabel");

}

// shape RightTopLabel {

// print("RightTopLabel");

// }

449

// shape LeftBottomLabel {

// print("LeftBottomLabel");

// }

shape MiddleBottomLabel{

print("#name#");

}

// shape RightBottomLabel {

// print("RightBottomLabel");

// }

Listing G.51: Trigger shapescript

// ShapeScript StereoType: DEMO_hidden

shape main

{

noShadow = "true";

SetLineStyle("solid");

moveto(0,0);

lineto(100,0);

}

shape source

{

// No source side drawing

}

shape target{ // draw an arrowhead at the target end

MoveTo(15,9);

LineTo(0,0);

LineTo(15,-9);

}

//shape LeftTopLabel {

// print("LeftTopLabel");

// }

shape MiddleTopLabel{

// print("MiddleTopLabel");

}

// shape RightTopLabel {

// print("RightTopLabel");

// }

// shape LeftBottomLabel {

// print("LeftBottomLabel");

// }

shape MiddleBottomLabel{

450

print("#name#");

}

// shape RightBottomLabel {

// print("RightBottomLabel");

// }

Listing G.52: In interview shapescript

451

